Abstract

This article is the second part of a robustness analysis of the aerothermal performance of the winglet structure. A challenging analytical test function and an engineering test are considered to further investigate the response performance of the efficient uncertainty quantification framework proposed in Part 1. Then, a series of original visualizing uncertainty quantities are proposed in this article and applied to the study of uncertainty quantification of the winglet structure. Finally, this efficient framework is applied to the uncertainty quantification of the effect of the conventional squealer tip and three different winglet squealer tips on the heat transfer performance of the GE-E3 rotor blade. According to the results of the uncertainty quantification calculation, in actual operation, the setting of the winglet structures will diminish rather than increase the heat transfer performance of the blade tip. This conclusion is completely opposite to the prediction of the deterministic calculation. The heat flux increase and standard deviation of squealer tip with pressure-side winglet are the highest among the four tip structures, which means that the robustness of heat transfer performance of squealer tip with pressure-side winglet is the worst. The parameter that has the greatest influence on the uncertainty of the heat transfer performance of the four tip structures is the tip clearance. But the influence of the inlet total temperature fluctuation must also be taken into account. So a satisfactory control system should be designed for the actual operation of the gas turbine so that the fluctuation of inlet total temperature can be attenuated rapidly. A positive correlation between the heat flux of the blade tip mean value and the standard deviation is revealed by the uncertainty quantification, which implies that reducing the heat flux of the blade tip mean value in the robust design of the blade tip tends to reduce the heat flux fluctuation as well. Therefore, the objective of the robust design of the blade tip can be either one of reducing the mean value of heat flux of the blade tip mean value or reducing the heat flux of the blade tip standard deviation without multi-objective optimization. It is worth noting that, like the aerodynamic performance uncertainty, there is an antagonistic relationship between the pressure-side cavity and suction-side cavity on the heat transfer performance uncertainty of the blade tip. Therefore, a reasonable ratio of pressure-side cavity to suction-side cavity in the turbine design can also lead to a blade tip with strong heat transfer performance robustness.

References

1.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.
2.
Bunker
,
R. S.
,
2006
, “
Axial Turbine Blade Tips: Function, Design, and Durability
,”
J. Propul. Power
,
22
(
2
), pp.
271
285
.
3.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
, pp.
1
40
.
4.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
, “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
(
1
), pp.
18
26
.
5.
Park
,
J. S.
,
Lee
,
D. H.
,
Rhee
,
D.-H.
,
Kang
,
S. H.
, and
Cho
,
H. H.
,
2014
, “
Heat Transfer and Film Cooling Effectiveness on the Squealer Tip of a Turbine Blade
,”
Energy
,
72
, pp.
331
343
.
6.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
1
), pp.
73
79
.
7.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
(
2
), pp.
131
138
.
8.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. C.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
9.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.
10.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip—Part II: Analysis of Aerothermal Interaction Physics
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052507
.
11.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
,
2003
, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
1
), pp.
90
96
.
12.
Yan
,
X.
,
Huang
,
Y.
,
He
,
K.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Numerical Investigations Into the Effect of Squealer–Winglet Blade tip Modifications on Aerodynamic and Heat Transfer Performance
,”
Int. J Heat Mass Transfer
,
103
, pp.
242
253
.
13.
Joo
,
J. S.
, and
Lee
,
S. W.
,
2017
, “
Heat/Mass Transfer Over the Cavity Squealer tip Equipped With a Full Coverage Winglet in a Turbine Cascade: Part 1—Data on the Winglet Top Surface
,”
Int. J. Heat. Mass. Transfer
,
108
, pp.
1255
1263
.
14.
Joo
,
J. S.
,
Lee
,
S. W.
, and
Joo
,
J. S.
,
2017
, “
Heat/Mass Transfer Over the Cavity Squealer Tip Equipped With a Full Coverage Winglet in a Turbine Cascade: Part 2—Data on the Cavity Floor
,”
Int. J Heat Mass Transfer
,
108
, pp.
1264
1272
.
15.
O’Dowd
,
D. O.
,
Zhang
,
Q.
,
He
,
L.
,
Oldfield
,
M. L. G.
,
Ligrani
,
P. M.
,
Cheong
,
B. C. Y.
, and
Tibbott
,
I.
,
2011
, “
Aerothermal Performance of a Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
133
(
4
), p.
041026
.
16.
Hu
,
W.
,
Choi
,
K. K.
, and
Cho
,
H.
,
2016
, “
Reliability-Based Design Optimization of Wind Turbine Blades for Fatigue Life Under Dynamic Wind Load Uncertainty
,”
Struct. Multidiscipl. Optim.
,
54
(
4
), pp.
953
970
.
17.
Li
,
L.
,
Wan
,
H.
,
Gao
,
W.
,
Tong
,
F.
, and
Li
,
H.
,
2019
, “
Reliability Based Multidisciplinary Design Optimization of Cooling Turbine Blade Considering Uncertainty Data Statistics
,”
Struct. Multidiscipl. Optim.
,
59
(
2
), pp.
659
673
.
18.
Abdallah
,
I.
,
Natarajan
,
A.
, and
Sørensen
,
J. D.
,
2015
, “
Impact of Uncertainty in Airfoil Characteristics on Wind Turbine Extreme Loads
,”
Renewable Energy
,
75
, pp.
283
300
.
19.
Bloom
,
N.
,
2009
, “
The Impact of Uncertainty Shocks
,”
Econometrica
,
77
(
3
), pp.
623
685
.
20.
Wang
,
X.
, and
Zou
,
Z.
,
2019
, “
Uncertainty Analysis of Impact of Geometric Variations on Turbine Blade Performance
,”
Energy
,
176
, pp.
67
80
.
21.
Razaaly
,
N.
,
Persico
,
G.
, and
Congedo
,
P. M.
,
2019
, “
Impact of Geometric, Operational, and Model Uncertainties on the Non-Ideal Flow Through a Supersonic ORC Turbine Cascade
,”
Energy
,
169
, pp.
213
227
.
22.
D’Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.
23.
Luo
,
J.
,
Zhiheng
,
X.
, and
Feng
,
L.
,
2021
, “
Robust Design Optimization Considering Inlet Flow Angle Variations of a Turbine Cascade
,”
Aerosp. Sci. Technol.
,
116
, p.
106893
.
24.
Yang
,
J.
, and
Su
,
C.
,
2021
, “
Robust Optimization of Microgrid Based on Renewable Distributed Power Generation and Load Demand Uncertainty
,”
Energy
,
223
, p.
120043
.
25.
Zhou
,
Y.
,
Wei
,
Z.
,
Sun
,
G.
,
Cheung
,
K. W.
,
Zang
,
H.
, and
Chen
,
S.
,
2018
, “
A Robust Optimization Approach for Integrated Community Energy System in Energy and Ancillary Service Markets
,”
Energy
,
148
, pp.
1
15
.
26.
Lu
,
X.
,
Liu
,
Z.
,
Ma
,
L.
,
Wang
,
L.
,
Zhou
,
K.
, and
Yang
,
S.
,
2020
, “
A Robust Optimization Approach for Coordinated Operation of Multiple Energy Hubs
,”
Energy
,
197
, p.
117171
.
27.
Du
,
X.
, and
Leifsson
,
L.
,
2019
, “
Optimum Aerodynamic Shape Design Under Uncertainty by Utility Theory and Metamodeling
,”
Aerosp. Sci. Technol.
,
95
, p.
105464
.
28.
Fei
,
C. W.
,
Li
,
H.
,
Liu
,
H. T.
,
Lu
,
C.
,
keshtegar
,
B.
, and
An
,
L.-Q.
,
2020
, “
Multilevel Nested Reliability-Based Design Optimization With Hybrid Intelligent Regression for Operating Assembly Relationship
,”
Aerosp. Sci. Technol.
,
103
, p.
105906
.
29.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat-Transfer Coefficients of a Turbine Blade-Tip and Near-Tip Regions
,”
J. Thermophys. Heat Transfer
,
17
(
3
), pp.
297
303
.
30.
Cherry
,
D. G.
,
Gay
,
C. H.
, and
Lenahan
,
D. T.
,
1982
, “
Low Pressure Turbine Test Hardware Detailed Design Report
,”
National Aeronautics and Space Administration, Lewis Research Center
.
31.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
32.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Safe.
,
93
(
7
), pp.
964
979
.
33.
Parakkat
,
A. D.
,
Pundarikaksha
,
U. B.
, and
Muthuganapathy
,
R.
,
2018
, “
A Delaunay Triangulation Based Approach for Cleaning Rough Sketches
,”
Comput. Graph.
,
74
, pp.
171
181
.
You do not currently have access to this content.