Abstract

The flow over the linear low-pressure turbine cascade MTU-T161 at Re = 90,000 is analyzed using delayed detached eddy simulations (DDES). At this operating point, the low Reynolds number and the high loading of the blade result in a separation bubble and a separation-induced transition of the flow over the suction side. The utilized DDES method is based on a vorticity-based formulation to calculate the subgrid length scales, and it incorporates the one-equation γ-transition model. The computational model of the MTU-T161 cascade consists of one blade passage, including the diverging viscous sidewalls. To reproduce realistic operating conditions and to mimic the experiments, synthetic turbulence is prescribed at the inlet of the computational domain. Several studies are performed to assess the accuracy and performance of the DDES one-equation γ-transition model against experimental data and a benchmark large eddy simulations (LES). The primary focus is on the prediction of the separation and the separation-induced transition mechanism. First of all, a systematic grid convergence study is conducted and grid criteria are derived in order to ensure a satisfactory agreement of the flow metrics, such as isentropic Mach number, friction coefficient distribution, and total pressure wake losses at mid-span with experimental data. Furthermore, a detailed analysis of the DDES model parameters, such as shielding function and subgrid length scale, is presented and the effect of these parameters on the prediction accuracy of the separation bubble region is analyzed. The analysis of the suction side boundary layer indicates that the turbulent kinetic energy should be resolved and modeled properly in order to represent the separation bubble correctly. In particular, the correct prediction of the separated shear layer above the separation bubble is of utmost importance. The results of the simulations reveal higher demands on grid resolution for such transitional flows than typically have been reported in the literature for turbulent boundary layers. This higher demand on grid resolution results in more expensive simulations than Reynolds-averaged Navier–Stokes (RANS). Nevertheless, DDES requires less computing time than wall-resolved LES. Additionally, the results of the transitional DDES model are compared to DDES without a transition model, an RANS eddy viscosity model, and a reference LES. The results show that the DDES approach needs to be coupled with a transition model, such as the one-equation γ-transition model, in order to capture the flow topology over a highly loaded turbine blade correctly. The benefit of the DDES one-equation γ-transition model becomes particularly evident when predicting the separated shear layer, the transition process, and the subsequent reattachment. The RANS eddy viscosity turbulence and transition models applied within our study are not able to predict the aforementioned mechanisms accurately. For highly loaded turbine blades in particular, the accurate prediction of flow separation and potential reattachment is crucial for the aerodynamic design of turbines, since large parts of the total pressure loss are generated in the separated region. For this reason, the DDES one-equation γ-transition model can be a good compromise in terms of predictive accuracy and computational costs.

References

1.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
2.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
3.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.
4.
Spalart
,
P.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasability of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Comput. Sci.
,
1137
(
1
), pp.
137
148
.
5.
Han
,
Y.
,
Ding
,
G.
,
He
,
Y.
,
Wu
,
J.
, and
Le
,
J.
,
2018
, “
Assessment of the IDDES Method Acting as Wall-Modeled LES in the Simulation of Spatially Developing Supersonic Flat Plate Boundary Layers
,”
Eng. Appl. Comput. Fluid Mech.
,
12
(
1
), pp.
89
103
.
6.
Li
,
J.
,
Hu
,
J.
, and
Zhang
,
C.
,
2020
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in an Axial Compressor Stator Using DDES
,”
Energies
,
13
(
9
), p.
021107
.
7.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2022
, “
Detached Eddy Simulation: Recent Development and Application to Compressor Tip Leakage Flow
,”
ASME J. Turbomach.
,
144
(
1
), p.
011009
.
8.
Menter
,
F. R.
,
Schütze
,
J.
, and
Gritskevich
,
M.
,
2012
, “Global vs. Zonal Approaches in Hybrid RANS-LES Turbulence Modelling,”
Progress in Hybrid RANS-LES Modelling
,
Fu
,
S.
,
Haase
,
W.
,
Peng
,
S.-H.
, and
Schwamborn
,
D.
, eds.,
Springer
,
Berlin
, pp.
15
28
.
9.
Chaouat
,
B.
,
2017
, “
The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows
,”
Flow Turbulence Combust.
,
99
(
2
), pp.
279
327
.
10.
Menter
,
F.
,
Hüppe
,
A.
,
Matyushenko
,
A.
, and
Kolmogorov
,
D.
,
2021
, “
An Overview of Hybrid RANS–LES Models Developed for Industrial CFD
,”
Appl. Sci.
,
11
(
6
), p.
2459
.
11.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
12.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the K–ω Shear Stress Transport Model
,”
Flow Turbulence Combust.
,
88
(
3
), pp.
431
449
.
13.
Mockett
,
C.
,
Fuchs
,
M.
, and
Thiele
,
F.
,
2018
, “Non-Zonal Approaches for Grey Area Mitigation,”
Go4Hybrid: Grey Area Mitigation for Hybrid RANS-LES Methods
,
C.
Mockett
,
W.
Haase
, and
D.
Schwamborn
, eds.,
Springer International Publishing
,
Cham
, pp.
17
50
.
14.
Guseva
,
E. K.
,
Garbaruk
,
A. V.
, and
Strelets
,
M. K.
,
2017
, “
Assessment of Delayed DES and Improved Delayed DES Combined With a Shear-Layer-Adapted Subgrid Length-Scale in Separated Flows
,”
Flow Turbulence Combust.
,
98
(
2
), pp.
481
502
.
15.
Mockett
,
C.
,
Fuchs
,
M.
,
Garbaruk
,
A.
,
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
,
Thiele
,
F.
, and
Travin
,
A.
,
2015
, “Two Non-Zonal Approaches to Accelerate RANS to LES Transition of Free Shear Layers in DES,”
Progress in Hybrid RANS-LES Modelling
,
S.
Girimaji
,
W.
Haase
,
S.-H.
Peng
, and
D.
Schwamborn
, eds.,
Springer International Publishing
,
Cham
, pp.
187
201
.
16.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K
, and
Travin
,
A. K.
,
2015
, “
An Enhanced Version of DES With Rapid Transition From RANS to LES in Separated Flows
,”
Flow Turbulence Combust.
,
95
(
1
), pp.
709
737
.
17.
Probst
,
A.
, and
Reuß
,
S.
,
2016
, “
Progress in Scale-Resolving Simulations With the DLR-Tau Code
,”
Deutscher Luft- und Raumfahrtkongress
,
Braunschweig
.
18.
Sørensen
,
N.
,
Bechmann
,
A.
, and
Zahle
,
F.
,
2011
, “
3D CFD Computations of Transitional Flows Using DES and a Correlation Based Transition Model
,”
Wind Energy
,
14
(
1
), pp.
77
90
.
19.
Alam
,
M.
,
Walters
,
K.
, and
Thompson
,
D.
,
2013
, “
A Transition-Sensitive Hybrid RANS/LES Modeling Methodology for CFD Applications
,”
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
,
Grapevine (Dallas/Ft. Worth Region), TX
,
Jan. 7–10
, AIAA, p.
995
.
20.
Hodara
,
J.
, and
Smith
,
M. J.
,
2017
, “
Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation Closure for Separated Transitional Flows
,”
AIAA J.
,
55
(
6
), pp.
1948
1958
.
21.
Yin
,
Z.
, and
Durbin
,
P. A.
,
2022
, “
Detached Eddy Simulation of Transition in Turbomachinery: Linear Compressor Cascade
,”
ASME J. Turbomach.
,
144
(
3
), p.
031002
.
22.
Kato
,
M.
,
Launder
,
B. E.
,
Durst
,
F.
,
Kasagi
,
N.
,
Launder
,
B. E.
,
Schmidt
,
F. W.
,
Suzuki
,
K.
, and
Whitelaw
,
J. H.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
,
Aug. 16–18
.
23.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-equation Local Correlation-Based Transition Model
,”
Flow Turbulence Combust.
,
95
(
4
), pp.
583
619
.
24.
Müller
,
F. M.
,
Tucker
,
P. G.
,
Wang
,
Z.-N.
,
Morsbach
,
C.
, and
Bergmann
,
M.
,
2023
, “
On the Prediction of Separation-Induced Transition by Coupling Delayed Detached-Eddy Simulation With γ-Transition Model
,”
15th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics, ETC
,
Budapest, Hungary
, pp.
1
17
.
25.
Travin
,
A. K.
,
Shur
,
M. L.
,
Strelets
,
M.
, and
Spalart
,
P. R.
,
2002
, “Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex TurbulentFlows,”
Fluid Mechanics and Its Applications
,
Springer Netherlands
,
Dordrecht
, pp.
239
254
.
26.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
27.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 8–11
, pp.
1
18
.
28.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
29.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-Reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016)
, Papadrakakis, M., ed., Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA),
Crete, Greece
, pp.
7403
7422
.
30.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow Turbulence Combust.
,
93
(
1
), pp.
63
92
.
31.
Gier
,
J.
,
Franke
,
M.
,
Hübner
,
N.
, and
Schröder
,
T.
,
2010
, “
Designing Low Pressure Turbines for Optimized Airfoil Lift
,”
ASME J. Turbomach.
,
132
(
3
), p.
031008
.
32.
Müller-Schindewolffs
,
C.
,
Baier
,
R.-D.
,
Seume
,
J. R.
, and
Herbst
,
F.
,
2017
, “
Direct Numerical Simulation Based Analysis of RANS Predictions of a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
139
(
8
), p.
081006
.
33.
Entlesberger
,
R.-G.
,
Martinstetter
,
M.
, and
Staudacher
,
W.
,
2005
, “
Untersuchungen am Turbinengitter T161 zur Bestimmung der Profildruckverteilung und der Gittercharakteristik
,” Institutsbericht LRT-WE12-05/02,
Universität der Bundeswehr München
,
Neubiberg, Germany
, May.
34.
Tucker
,
P. G.
,
2014
,
Unsteady Computational Fluid Dynamics in Aeronautics
, Vol. 104 of SpringerLink Bücher,
Springer
,
Dordrecht
.
35.
Spalart
,
P. R.
,
2001
, “
Young-Person’s Guide to Detached-Eddy Simulation Grids
,” NASA Contractor Report, National Aeronautics and Space Administration.
36.
Deck
,
S.
, and
Renard
,
N.
,
2020
, “
Towards an Enhanced Protection of Attached Boundary Layers in Hybrid RANS/LES Methods
,”
J. Comput. Phys.
,
400
(
1
), p.
108970
.
37.
Fard afshar
,
N.
,
Kozulovic
,
D.
,
Henninger
,
S.
,
Deutsch
,
J.
, and
Bechlars
,
P.
,
2023
, “
Turbulence Anisotropy Analysis at the Middle Section of a Highly Loaded 3D Linear Turbine Cascade Using Large Eddy Simulation
,”
J. Global Power Propul. Soc.
,
7
(
1
), pp.
71
84
.
You do not currently have access to this content.