Abstract

The control of cavities sealing has been a challenging problem since early gas turbine development stages and several aspects regarding the flow physics and the modeling of rim seal flows, especially in terms of unsteady phenomena, still represent an open question. Fundamental test cases have been extensively used in the open literature to characterize the level of ingestion by varying the main flow parameters and the geometrical features. In most of them, the seal effectiveness is measured by using taps connected to a gas analyzer used to sample the concentration on the stator surface of a reference foreign gas (generally CO2) used to seed the purge flow. Consequently, the results are usually single-point measurements, and unsteady effects are inevitably neglected. Moreover, the intrusiveness of the approach must be carefully checked, and the application on the rotor side demands for complex slip-rings or telemetry. To overcome these limitations, the current work presents the application of the pressure-sensitive paint (PSP) technique to the study of hot gas ingestion phenomena on a single-stage rotating cold rig. By using an oxygen-free gas such as N2 as purge flow, the PSP was used to measure the partial pressure of oxygen at the wall through the wide optical accesses present in the rig. Then, the collected 2D distributions of pressure were related to the seal effectiveness inside the wheel space. The proposed methodology was first validated through a comparison with the data obtained from standard gas sampling and then applied as main experimental technique to characterize the seal ingestion. The analysis of the results highlighted the capabilities of the PSP technique to fast collect data on both stator and rotor sides, including the tip of the seal tooth where nonuniform efficiency distributions in the circumferential direction have been detected.

References

1.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
J. Eng. Power
,
92
(
3
), pp.
335
341
.
2.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
3.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
4.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
5.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
Turbo Expo: Power for Land,Q5 Sea, and Air
,
The Hague, Netherlands
,
June 13–16
, ASME, p. V001T01A041, Paper No. 94-GT-126.
6.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
7.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
8.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
9.
Bohn
,
D.
,
Johann
,
E.
, and
Krüger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
Turbo Expo: Power for Land, Sea, and Air
,
Houston, TX
,
June 5–8
, ASME, p. V001T01A034, Paper No. 95-GT-143.
10.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
, ASME, pp. 1033–1040, Paper No. GT2003-38459.
11.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Wang
,
C. -Z.
,
Paolillo
,
R. E.
, and
Johnson
,
B. V.
,
2007
, “
The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity
,”
Turbo Expo: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, ASME, pp. 1189–1198, Paper No. GT2007-27671.
12.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C. -Z.
, and
Glahn
,
J. A.
,
2010
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.
13.
Balasubramanian
,
J.
,
Junnarkar
,
N.
,
Zhou
,
D. W.
,
Roy
,
R. P.
,
Kim
,
Y. W.
, and
Moon
,
H. K.
,
2011
, “
Experiments on Aft-disk Cavity Ingestion in a Model 1.5-Stage Axial-Flow Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
Vancouver, British Columbia, Canada
,
June 6–10
, ASME, pp. 871–881, Paper No. GT2011-45895.
14.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
15.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part Ii: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
16.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
17.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part Ii: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021013
.
18.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2014
, “
Experimental Measurements of Hot Gas Ingestion Through Turbine Rim Seals at Off-Design Conditions
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
228
(
5
), pp.
491
507
.
19.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
20.
Isobel Mear
,
L.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Theoretical Model to Determine Effect of Ingress on Turbine Disks
,”
J. Eng. Gas. Turbines. Power.
,
138
(
3
), p.
032502
.
21.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
, and
Lock
,
G. D.
,
2017
, “
Numerical Characterization of Hot-Gas Ingestion Through Turbine Rim Seals
,”
J. Eng. Gas Turbines Power.
,
139
(
3
), p.
032602
.
22.
Clark
,
K.
,
Barringer
,
M.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
,
June 13–17
, ASME, p. V05AT15A034, Paper No. GT2016-58095.
23.
Orsini
,
L.
,
Picchi
,
A.
,
Bonini
,
A.
,
Innocenti
,
L.
,
Di Benedetto
,
D.
,
Da Soghe
,
R.
, and
Mazzei
,
L.
,
2022
, “
Design Procedure of a Rotating Cavity Rig for Hot Gas Ingestion Investigation
,”
Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, Netherlands
,
June 13–17
, ASME, p. V06BT14A011, Paper No. GT2022-82676.
24.
Boutet-Blais
,
G.
,
Lefrancois
,
J.
,
Dumas
,
G.
,
Julien
,
S.
,
Harvey
,
J.-F.
,
Marini
,
R.
, and
Caron
,
J.-F.
,
2011
, “
Passive Tracer Validity for Cooling Effectiveness Through Flow Computation in a Turbine Rim Seal Environment
,”
Turbo Expo:Power for Land, Sea, and Air
,
Vancouver, British Columbia, Canada
,
June 6–10
, ASME, pp. 821–831, Paper No. GT2011-45654.
25.
Sangan
,
C. M.
,
2011
, “Measurement of Ingress Through Gas Turbine Rim Seals,” Ph.D. Thesis, University of Bath, Bath, UK.
26.
Babazzi
,
G.
,
Bacci
,
T.
,
Picchi
,
A.
,
Fondelli
,
T.
,
Lenzi
,
T.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2022
, “
Development and Application of a Concentration Probe for Mixing Flows Tracking in Turbomachinery Applications
,”
ASME J. Turbomach.
,
144
(
3
), p.
031013
.
27.
Liu
,
T.
,
Sullivan
,
J. P.
,
Asai
,
K.
,
Klein
,
C.
, and
Egami
,
Y.
,
2005
,
Pressure and Temperature Sensitive Paints
, Vol.
1
,
Springer
,
Berlin
.
28.
Gregory
,
J. W.
,
Juliano
,
T. J.
,
Disotell
,
K. J.
,
Peng
,
D.
,
Crafton
,
J.
, and
Komerath
,
N. M.
,
2013
, “
Deconvolution-Based Algorithms for Deblurring PSP Images of Rotating Surfaces
,”
Proceedings of the AIAA Aerospace Sciences Meeting
,
Grapevine (Dallas/Ft. Worth Region), TX
,
Jan. 7–10
, pp.
2013
0484
.
29.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, ASME, pp. 1027–1038, Paper No. GT2009-60306,
30.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid. Sci.
,
48
, pp.
122
133
.
31.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.