Abstract

The rim seals of gas turbines are used to control the ingestion of hot mainstream gas into the wheel space between the rotor disk and the stationary casing. Sealing air, which is generally used to pressurize the cavity space, flows through the seal clearance and then mixes with the flow path in the annulus. Predicting the correct quantity of purge flow necessary to prevent excessive ingestion of hot gases while, at the same time, minimizing the penalties in terms of engine efficiency and stage aerodynamics represents a great challenge for the designers and a crucial point for the design of reliable engines. Such estimate is governed by unsteady phenomena, and computational fluid dynamics (CFD) approaches are still expensive and time consuming, especially if 3D domains and unsteady conditions have to be simulated. Fundamental test cases, replicating actual engines geometries, are still a valid approach to calibrate correlations or simplified models such as the so-called orifice model. However, most of the experimental studies deal with test rigs at room temperature and do not take into account the effect of the density ratio (DR) between purge and main flows. To fill this gap, the present article reports the impact of the density ratio on the rim sealing effectiveness by performing a nonintrusive diagnostic based on the pressure-sensitive paint (PSP) technique on both the stator side and the rotor side. The analysis was performed on a cold rotating cavity rig, developed for the study of hot gas ingestion, where two different values of density ratios were tested by using N2 (DR = 1) and CO2 (DR = 1.52) as purge flow. The data extracted from the PSP seal effectiveness maps allowed to calibrate the orifice model for the stator side and to fit the coefficients of the buffer ratio model for the rotor surface at different flow conditions where the externally induced ingress is the dominant mechanism for gas ingestion. The results highlighted the impact of the DR on the seal effectiveness and on the low-order models considered for the data analysis. In the end, it is shown that the obtained results can be used to scale experimental data, generally collected at DR close to one, toward more representative engine values where the difference between the density of purge and main flows cannot be neglected.

References

1.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
J. Eng. Power
,
92
(
3
), pp.
335
341
.
2.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
,
1992
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
,
114
(
2
), pp.
433
438
.
3.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor-Stator Wheelspaces in the Presence of External Flow
,”
Turbo Expo: Power for Land, Sea, and Air
,
The Hague, Netherlands
,
June 13–16
, ASME, p. V001T01A041, Paper No. 94-GT-126.
4.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
5.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
Atlanta, GA
,
June 16–19
, ASME Paper No. GT2003-38459.
6.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
Turbo Expo: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11, ASME Paper No. GT2006-90453
.
7.
Bohn
,
D.
,
Johann
,
E.
, and
Krüger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
Turbo Expo: Power for Land, Sea, and Air
,
Houston, TX
,
June 5–8
, ASME Paper No. 95-GT-143.
8.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.
9.
Hills
,
N. J.
,
Chew
,
J. W.
, and
Turner
,
A. B.
,
2002
, “
Computational and Mathematical Modeling of Turbine Rim Seal Ingestion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
306
315
.
10.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part I: Rotationally Induced Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031005
.
11.
Owen
,
J. M.
,
2010
, “
Prediction of Ingestion Through Turbine Rim Seals—Part II: Externally Induced and Combined Ingress
,”
ASME J. Turbomach.
,
133
(
3
), p.
031006
.
12.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2015
, “
Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
13.
Isobel Mear
,
L.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Theoretical Model to Determine Effect of Ingress on Turbine Disks
,”
J. Eng. Gas. Turbines. Power.
,
138
(
3
), p.
032502
.
14.
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Effect of Ingestion on Temperature of Turbine Disks
,”
ASME J. Turbomach.
,
135
(
5
), p.
051010
.
15.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Sangan
,
C. M.
,
Scobie
,
J. A.
, and
Lock
,
G. D.
,
2017
, “
Numerical Characterization of Hot-Gas Ingestion Through Turbine Rim Seals
,”
ASME J. Eng. Gas. Turbines. Power.
,
139
(
3
), p.
032602
.
16.
Clark
,
K.
,
Barringer
,
M.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Quantify Sealing Effectiveness for Engine Realistic Rim Seals
,”
Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-58095.
17.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
18.
Sangan
,
C. M.
,
2011
, “Measurement of Ingress Through Gas Turbine Rim Seals,” Ph.D. Thesis, University of Bath, Bath, UK.
19.
Orsini
,
L.
,
Picchi
,
A.
,
Bonini
,
A.
,
Innocenti
,
L.
,
Di Benedetto
,
D.
,
Da Soghe
,
R.
, and
Mazzei
,
L.
,
2022
, “
Design Procedure of a Rotating Cavity Rig for Hot Gas Ingestion Investigation
,”
Turbo Expo: Power for Land, Sea, and Air
,
Rotterdam, Netherlands
,
June 13–17
, ASME Paper No. GT2022-82676.
20.
Liu
,
T.
,
Sullivan
,
J. P.
,
Asai
,
K.
,
Klein
,
C.
, and
Egami
,
Y.
,
2005
,
Pressure and Temperature Sensitive Paints
, Vol. 1,
Springer
,
Berlin
.
21.
Caciolli
,
G.
,
Facchini
,
B.
,
Picchi
,
A.
, and
Tarchi
,
L.
,
2013
, “
Comparison Between PSP and TLC Steady State Techniques for Adiabatic Effectiveness Measurement on a Multiperforated Plate
,”
Exp. Therm. Fluid. Sci.
,
48
, pp.
122
133
.
22.
Charbonnier
,
D.
,
Ott
,
P.
,
Jonsson
,
M.
,
Cottier
,
F.
, and
Köbke
,
T.
,
2009
, “
Experimental and Numerical Study of the Thermal Performance of a Film Cooled Turbine Platform
,”
Turbo Expo: Power for Land, Sea, and Air
,
Orlando, FL
,
June 8–12
, ASME Paper No. GT2009-60306.
23.
Orsini
,
L.
,
Picchi
,
A.
,
Facchini
,
B.
,
Bonini
,
A.
, and
Innocenti
,
L.
,
2023
, “
On the Use of PSP to Determine the Rim Sealing Effectiveness
,”
ASME J. Turbomach.
24.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2011
, “
Prediction of Ingress Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
25.
Graikos
,
D.
,
Carnevale
,
M.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2021
, “
Influence of Flow Coefficient on Ingress Through Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
11
), p.
111010
.
You do not currently have access to this content.