Abstract

In the second paper of this three-part series, we focus on the simulation of transonic test cases for turbomachinery applications using a high-order discontinuous Galerkin spectral element method (DGSEM). High-fidelity simulations of transonic compressors and turbines are particularly challenging, as they typically occur at high Reynolds numbers and require additional treatment to reliably capture the shock waves characterizing such flows. A recently developed finite-volume subcell shock capturing scheme tailored for the DGSEM is applied and evaluated with regard to the shock sensor. To this end, we conduct implicit large eddy simulations of a high-pressure turbine cascade from the public literature and a transonic compressor cascade measured at the German Aerospace Center, both at a high Reynolds number above 106. Based on the results, we examine modal-energy and flow-feature based shock indicator functions, compare the simulation data to experimental and numerical studies, and present an analysis of the unsteady features of the flows.

References

1.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
2.
Wheeler
,
A. P. S.
,
Sandberg
,
R. D.
,
Sandham
,
N. D.
,
Pichler
,
R.
,
Michelassi
,
V.
, and
Laskowski
,
G.
,
2016
, “
Direct Numerical Simulations of a High-Pressure Turbine Vane
,”
ASME J. Turbomach.
,
138
(
7
), p.
071003
.
3.
Pichler
,
R.
,
Sandberg
,
R. D.
,
Laskowski
,
G.
, and
Michelassi
,
V.
,
2017
, “
High-Fidelity Simulations of a Linear HPT Vane Cascade Subject to Varying Inlet Turbulence
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
.
4.
Garai
,
A.
,
Diosady
,
L. T.
,
Murman
,
S. M.
, and
Madavan
,
N. K.
,
2017
, “
Scale-Resolving Simulations of Bypass Transition in a High-Pressure Turbine Cascade Using a Spectral-Element Discontinuous-Galerkin Method
,” Volume 2B: Turbomachinery,
American Society of Mechanical Engineers
.
5.
Seguí
,
L. M.
,
Gicquel
,
L. Y. M.
,
Duchaine
,
F.
, and
de Laborderie
,
J.
,
2018
, “
Importance of Boundary Layer Transition in a High-Pressure Turbine Cascade Using LES
,” Volume 2C: Turbomachinery,
American Society of Mechanical Engineers
.
6.
Arts
,
T.
,
De Rouvroit
,
M. L.
, and
Rutherford
,
A. W.
,
1990
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade: A Test Case for Inviscid and Viscous Flow Computations
,” Von Karman Institute for Fluid Dynamics, https://resolver.tudelft.nl/uuid:1bdc512b-a625-4607-a339-3cc9b371215e.
7.
Dupuy
,
D.
,
Gicquel
,
L.
,
Odier
,
N.
,
Duchaine
,
F.
, and
Arts
,
T.
,
2020
, “
Analysis of the Effect of Intermittency in a High-Pressure Turbine Blade
,”
Phys. Fluids
,
32
(
9
), p.
095101
.
8.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2020
, “
Bypass Transition in Boundary Layers Subject to Strong Pressure Gradient and Curvature Effects
,”
J. Fluid. Mech.
,
888
, pp.
A4-1
A4-34
.
9.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses
,”
ASME J. Turbomach.
,
143
(
9
), p.
091002
.
10.
Bode
,
C.
,
Przytarski
,
P. J.
,
Leggett
,
J.
, and
Sandberg
,
R. D.
,
2022
, “
Highly Resolved Large-Eddy Simulations of a Transonic Compressor Stage Midspan Section Part I: Effect of Inflow Disturbances
,”
Volume 10D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Turbomachinery General Interest; Unsteady Flows in Turbomachinery
,
Rotterdam, Netherlands
,
June 13–17
,
American Society of Mechanical Engineers
.
11.
Wang
,
Z.
,
Fidkowski
,
K.
,
Abgrall
,
R.
,
Bassi
,
F.
,
Caraeni
,
D.
,
Cary
,
A.
,
Deconinck
,
H.
, et al.,
2013
, “
High-Order CFD Methods: Current Status and Perspective
,”
Int. J. Numer. Meth. Fluids
,
72
(
8
), pp.
811
845
.
12.
Kronbichler
,
M.
, and
Persson
,
P.-O.
,
2021
,
Efficient High-Order Discretizations for Computational Fluid Dynamics
,
Springer International Publishing
,
Netherlands
.
13.
Hindenlang
,
F. J.
,
Gassner
,
G. J.
, and
Munz
,
C. -D.
,
2014
, “
Improving the Accuracy of Discontinuous Galerkin Schemes at Boundary Layers
,”
Int. J. Numer. Meth. Fluids
,
75
(
6
), pp.
385
402
.
14.
Gassner
,
G. J.
,
Winters
,
A. R.
, and
Kopriva
,
D. A.
,
2016
, “
Split Form Nodal Discontinuous Galerkin Schemes With Summation-By-Parts Property for the Compressible Euler Equations
,”
J. Comput. Phys.
,
327
, pp.
39
66
.
15.
Winters
,
A. R.
,
Moura
,
R. C.
,
Mengaldo
,
G.
,
Gassner
,
G. J.
,
Walch
,
S.
,
Peiro
,
J.
, and
Sherwin
,
S. J.
,
2018
, “
A Comparative Study on Polynomial Dealiasing and Split Form Discontinuous Galerkin Schemes for Under-Resolved Turbulence Computations
,”
J. Comput. Phys.
,
372
, pp.
1
21
.
16.
Garai
,
A.
,
Diosady
,
L.
,
Murman
,
S.
, and
Madavan
,
N.
,
2015
, “
DNS of Flow in a Low-Pressure Turbine Cascade Using a Discontinuous-Galerkin Spectral-Element Method
,”
ASME Turbo Expo 2015: Turbine Technical Conference and Exposition Volume 2B: Turbomachinery
,
Montreal, Quebec, Canada
,
June 15–19
,
American Society of Mechanical Engineers
.
17.
Persson
,
P.-O.
, and
Peraire
,
J.
,
2006
, “
Sub-Cell Shock Capturing for Discontinuous Galerkin Methods
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 9–12
,
American Institute of Aeronautics and Astronautics
.
18.
Chaudhuri
,
A.
,
Jacobs
,
G.
,
Don
,
W.
,
Abbassi
,
H.
, and
Mashayek
,
F.
,
2017
, “
Explicit Discontinuous Spectral Element Method With Entropy Generation Based Artificial Viscosity for Shocked Viscous Flows
,”
J. Comput. Phys.
,
332
, pp.
99
117
.
19.
Yu
,
J.
, and
Hesthaven
,
J. S.
,
2020
, “
A Study of Several Artificial Viscosity Models Within the Discontinuous Galerkin Framework
,”
Commun. Comput. Phys.
,
27
(
5
), pp.
1309
1343
.
20.
Sonntag
,
M.
, and
Munz
,
C.-D.
,
2016
, “
Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods Using Finite Volume Sub-Cells
,”
J. Sci. Comput.
,
70
(
3
), pp.
1262
1289
.
21.
Hennemann
,
S.
,
Rueda-Ramírez
,
A. M.
,
Hindenlang
,
F. J.
, and
Gassner
,
G. J.
,
2021
, “
A Provably Entropy Stable Subcell Shock Capturing Approach for High Order Split Form DG for the Compressible Euler Equations
,”
J. Comput. Phys.
,
426
, p.
109935
.
22.
Mossier
,
P.
,
Beck
,
A.
, and
Munz
,
C.-D.
,
2022
, “
A P-Adaptive Discontinuous Galerkin Method With HP-Shock Capturing
,”
J. Sci. Comput.
,
91
(
1
).
23.
Rueda-Ramírez
,
A. M.
,
Pazner
,
W.
, and
Gassner
,
G. J.
,
2022
, “
Subcell Limiting Strategies for Discontinuous Galerkin Spectral Element Methods
,”
Comput. Fluids
, p.
105627
.
24.
Dzanic
,
T.
, and
Witherden
,
F.
,
2022
, “
Positivity-Preserving Entropy-Based Adaptive Filtering for Discontinuous Spectral Element Methods
,”
J. Comput. Phys.
,
468
, p.
111501
.
25.
Klose
,
B.
,
Morsbach
,
C.
,
Bergmann
,
M.
, and
Kügeler
,
E.
,
2022
, “
Implicit LES of the Transonic Flow Over a High-Pressure Turbine Cascade Using DG Subcell Shock Capturing
,”
8th European Congress on Computational Methods in Applied Sciences and Engineering
,
Oslo, Norway
,
June 5–9
,
CIMNE
.
26.
Klinner
,
J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Willert
,
C. E.
,
2021
, “
High-Speed PIV of Shock Boundary Layer Interactions in the Transonic Buffet Flow of a Compressor Cascade
,”
Exp. Fluids
,
62
(
3
).
27.
Fernandez
,
P.
,
Nguyen
,
N.-C.
, and
Peraire
,
J.
,
2018
,
A Physics-Based Shock Capturing Method for Large-Eddy Simulation
.
28.
Kopriva
,
D. A.
,
2009
,
Implementing Spectral Methods for Partial Differential Equations
,
Springer
,
Netherlands
.
29.
Bassi
,
F.
, and
Rebay
,
S.
,
1997
, “
A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
131
(
2
), pp.
267
279
.
30.
Bergmann
,
M.
,
Morsbach
,
C.
, and
Ashcroft
,
G.
,
2020
, “
Assessment of Split Form Nodal Discontinuous Galerkin Schemes for the LES of a Low Pressure Turbine Profile
,” ERCOFTAC Series,
Springer International Publishing
, pp.
365
371
.
31.
Bergmann
,
M.
,
Gölden
,
R.
, and
Morsbach
,
C.
,
2018
, “
Numerical Investigation of Split Form Nodal Discontinuous Galerkin Schemes for the Implicit LES of a Turbulent Channel Flow
,”
Proceedings of the 7th European Conference on Computational Fluid Dynamics
.
32.
Morata
,
E. C.
,
Gourdain
,
N.
,
Duchaine
,
F.
, and
Gicquel
,
L.
,
2012
, “
Effects of Free-Stream Turbulence on High Pressure Turbine Blade Heat Transfer Predicted by Structured and Unstructured LES
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5754
5768
.
33.
Caçã Ferreira
,
T. S.
,
2021
, “
Boundary Layer Transition and Convective Heat Transfer of the High-Pressure Turbine Vane LS89
,” Ph.D.thesis,
Universite catholique de Louvain
,
Belgium
.
34.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2014
, “
Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems
,”
Flow Turbul. Combust.
,
93
(
1
), pp.
63
92
.
35.
Matha
,
M.
,
Morsbach
,
C.
, and
Bergmann
,
M.
,
2018
, “
A Comparison of Methods for Introducing Synthetic Turbulence
,”
7th European Conference on Computational Fluid Dynamics
,
Glasgow, UK
,
June 11–15
.
36.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-reflecting Boundary Conditions For Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete Island, Greece
,
June 5–10
.
37.
Weber
,
A.
, and
Sauer
,
M.
,
2016
, “
PyMesh - Template Documentation, German Aerospace Center (DLR)
,” Institute of Propulsion Technology, Linder Hoehe, Cologne, Germany, Technical Report DLR-IB-AT-KP-2016-34.
38.
Karypis
,
G.
, and
Kumar
,
V.
,
1998
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(
1
), pp.
359
392
.
39.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
40.
Alhawwary
,
M.
, and
Wang
,
Z.
,
2019
, “
On the Mesh Resolution of Industrial LES Based on the DNS of Flow Over the T106C Turbine
,”
Adv. Aerody.
,
1
(
1
).
41.
Kennedy
,
C. A.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier–Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.
42.
Bergmann
,
M.
,
Morsbach
,
C.
,
Ashcroft
,
G.
, and
Kügeler
,
E.
,
2022
, “
Statistical Error Estimation Methods for Engineering-Relevant Quantities From Scale-Resolving Simulations
,”
ASME J. Turbomach.
,
144
(
3
), p.
031005
.
43.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid. Mech.
,
285
, pp.
69
94
.
44.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A 3-D Finite Element Mesh Generator With Built-In Pre- and Post-Processing Facilities
,”
Int. J. Numer. Meth. Eng.
,
79
(
11
), pp.
1309
1331
.
45.
Chandrashekar
,
P.
,
2013
, “
Kinetic Energy Preserving and Entropy Stable Finite Volume Schemes for Compressible Euler and Navier-Stokes Equations
,”
Commun. Comput. Phys.
,
14
(
5
), pp.
1252
1286
.
46.
Hergt
,
A.
,
Klose
,
B.
,
Klinner
,
J.
,
Bergmann
,
M.
,
Lopez
,
E. M.
,
Grund
,
S.
, and
Morsbach
,
C.
,
2023
, “
Draft: On the Shock Boundary Layer Interaction in Transonic Compressor Blading
,”
Proceedings of the ASME Turbo Expo 2023
.
You do not currently have access to this content.