Abstract

In this investigation, multiple sets of time-averaged tomographic particle imaging velocimetry measurements are completed for laid-back, fan-shaped film cooling holes with “racetrack” shaped inlets. Traditional 10-10-10, laid-back, fan-shaped holes are inclined 30 deg to the mainstream flow on a flat plate. The inlet cross section varies from round to two elongated racetrack shapes. The cross-sectional area and the outlet-to-inlet area ratio for all the geometries are held constant. The flat plate is installed in a low-speed wind tunnel with a mainstream turbulence intensity of 8% and an average velocity of 21.6 m/s. The blowing ratios of the film jets range from 0.6 to 1.5 and the density ratio is 1. The Reynolds number of the cooling jet varies from 2600 to 8400. The characteristics of the resulting flowfield are coupled with the detailed film cooling effectiveness distributions. It can be noted from the results that the counter-rotating vortex pair generated by the 2:1 inlet is the closest to the surface and weakest in strength, likely caused by the minimum peak jet momentum of the three. The Reynolds stresses downstream of the 2:1 and 4:1 inlets are significantly lower than those downstream of the shaped hole with a round inlet. An inverse relation between volumetric turbulence accumulation (TA), and surface effectiveness (η), can be correlated for the blowing ratios considered. The turbulence accumulation term can thus be used to evaluate the performance of a film cooling hole design with flowfield data.

References

1.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, pp.
226
267
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
3.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
4.
Zhang
,
J.
,
Zhang
,
S.
,
Wang
,
C.
, and
Tan
,
X.
,
2020
, “
Recent Advances in Film Cooling Enhancement: A Review
,”
Chin. J. Aeronaut.
,
33
(
4
), pp.
1119
1136
.
5.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
.
6.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
Turbo Expo: Power for Land, Sea, and Air, Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration
,
Orlando, FL
,
June 2–5
, p.
V003T09A007
.
7.
Haven
,
B. A.
, and
Kurosaka
,
M.
,
1997
, “
Kidney and Anti-Kidney Vortices in Crossflow Jets
,”
J. Fluid Mech.
,
352
, pp.
27
64
.
8.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2010
, “
Film Cooling Effectiveness Comparison Between Shaped- and Double Jet Film Cooling Holes in a Row Arrangement
,”
ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 4: Heat Transfer, Parts A and B
,
Glasgow, UK
,
June 14–18
, pp.
1503
1515
.
9.
Kusterer
,
K.
,
Elyas
,
A.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2011
, “
The NEKOMIMI Cooling Technology: Cooling Holes With Ears for High-Efficient Film Cooling
,”
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Volume 5: Heat Transfer, Parts A and B
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
303
313
.
10.
Watson
,
T. B.
,
Vinton
,
K. R.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2019
, “
Influence of Hole Inlet Geometry on the Film Cooling Effectiveness From Shaped Film Cooling Holes
,”
Turbo Expo: Power for Land, Sea, and Air, Volume 5B: Heat Transfer
, p.
V05BT19A028
.
11.
Yu
,
Z.
,
Liu
,
J.
,
Li
,
C.
,
An
,
B.
, and
Xu
,
G.
,
2020
, “
Experimental Investigation of Film Cooling Performance on Blade Endwall With Diffusion Slot Holes and Stator-Rotor Purge Flow
,”
Turbo Expo: Power for Land, Sea, and Air, Volume 7B: Heat Transfer
, p.
V07BT12A015
.
12.
Wang
,
H.
, and
Wright
,
L. M.
,
2021
, “
Effect of Inlet Geometry on Flat Plate, Film Cooling Effectiveness From Shaped Holes
,”
ASME International Mechanical Engineering Congress and Exposition, Vol. 11: Heat Transfer and Thermal Engineering, Online, Nov. 1–5
, p.
V011T11A060
.
13.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
(
−1
), pp.
93
127
.
14.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid Mech.
,
279
(
−1
), pp.
1
47
.
15.
Stratton
,
Z. T.
, and
Shih
,
T. I. P.
,
2018
, “
Effects of Density and Blowing Ratios on the Turbulent Structure and Effectiveness of Film Cooling
,”
ASME J. Turbomach.
,
140
(
10
), p.
101007
.
16.
Watson
,
T. B.
,
Nahang-Toudeshki
,
S.
,
Wright
,
L. M.
,
Crites
,
D. C.
,
Morris
,
M. C.
, and
Riahi
,
A.
,
2016
, “
Application of S-PIV for Investigation of Round and Shaped Film Cooling Holes at High Density Ratios
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
49804
,
American Society of Mechanical Engineers
,
Seoul, South Korea
, p.
V05CT19A008
.
17.
Elkins
,
C. J.
,
Markl
,
M.
,
Pelc
,
N.
, and
Eaton
,
J. K.
,
2003
, “
4D Magnetic Resonance Velocimetry for Mean Velocity Measurements in Complex Turbulent Flows
,”
Exp. Fluids
,
34
(
4
), pp.
494
503
.
18.
Coletti
,
F.
,
Benson
,
M. J.
,
Ling
,
J.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2013
, “
Turbulent Transport in an Inclined Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
43
, pp.
149
160
.
19.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2015
, “
Film Cooling Effectiveness Improvements Using a Nondiffusing Oval Hole
,”
ASME J. Turbomach.
,
138
(
4
), p.
041004
.
20.
Issakhanian
,
E.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2017
, “
Pitfalls of Fan-Shaped Hole Design: Insights From Experimental Measurement of In-Hole Flow Through MRV
,”
Turbo Expo: Power for Land, Sea, and Air, Volume 5C: Heat Transfer
, p.
V05CT19A008
.
21.
Figueiredo
,
A. J. C.
,
Jones
,
R.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Lock
,
G. D.
,
Sangan
,
C. M.
, and
Cleaver
,
D. J.
,
2018
, “
Volumetric Velocimetry Measurements of Film Cooling Jets
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031021
.
22.
Scharnowski
,
S.
,
Bross
,
M.
, and
Kähler
,
C. J.
,
2019
, “
Accurate Turbulence Level Estimations Using PIV/PTV
,”
Exp. Fluids
,
60
(
1
), pp.
1
12
.
23.
Nair
,
V.
,
Sirignano
,
M. D.
,
Schmidheiser
,
S.
,
Dillon
,
L.
,
Fugger
,
C. A.
,
Yi
,
T.
, and
Jiang
,
N.
,
2020
, “
Tomographic PIV Characterization of the Near Field Topology of the Reacting Jet in Crossflow
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
1420
.
24.
Wang
,
H.
, and
Wright
,
L. M.
,
2023
, “
Coupling of Volumetric Flowfield and Surface Effectiveness Measurements for Flat Plate Film Cooling With Cylindrical Holes Using Tomographic PIV and PSP
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
6
), p.
061008
.
25.
Scarano
,
F.
,
2012
, “
Tomographic PIV: Principles and Practice
,”
Meas. Sci. Technol.
,
24
(
1
), p.
012001
.
26.
LaVision GmbH
,
2022
,
Product Manual: Aerosol Generator.
27.
Sciacchitano
,
A.
, and
Scarano
,
F.
,
2014
, “
Elimination of PIV Light Reflections Via a Temporal High Pass Filter
,”
Meas. Sci. Technol.
,
25
(
8
), p.
084009
.
28.
LaVision GmbH
,
2021
,
Product Manual: FlowMaster –Tomographic PIV
.
29.
Novara
,
M.
,
Batenburg
,
K. J.
, and
Scarano
,
F.
,
2010
, “
Motion Tracking-Enhanced MART for Tomographic PIV
,”
Meas. Sci. Technol.
,
21
(
3
), p.
035401
.
30.
Kline
,
S. J.
,
1953
, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
31.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.
You do not currently have access to this content.