Abstract

Film-cooling injection significantly affects the thermal behavior of turbine vane surfaces. In addition to the beneficial effect of the film shielding the vane from the hot gas flow, alteration of the thermal boundary layer should also be taken into account. The aim of the present work is to detail the film-cooling performance in terms of adiabatic effectiveness and external heat transfer coefficient on a 2D nozzle guide vane. A single row of cylindrical holes was tested on both pressure and suction sides of a literature vane, the VKI LS89, in a linear cascade. The employed measurement technique is a transient thermal method based on infrared thermography, which was thoroughly described and validated in a previous work. The influence of inlet freestream turbulence and blowing ratio was evaluated, and two different injection angles were considered for both pressure and suction sides. Spatially resolved distributions of adiabatic effectiveness and heat transfer coefficient (HTC) on the vane surface allow us to precisely quantify the above-mentioned aspects and highlight qualitative differences between pressure side and suction side behavior. Details regarding the generated non-uniformities in the measured parameters could be also provided, to emphasize how average quantities are not always sufficient to characterize such complex phenomena. The impact of different reference conditions to scale HTC results was also investigated. Such effect was found not negligible on the overall performance of the film-cooling system, especially on the suction side where transition plays a critical role. Ultimately, the collected results constitute a wide and detailed experimental database for numerical modeling validation in a well-studied environment as the LS89 configuration.

References

1.
Martinez-Botas
,
R. F.
, and
Yuen
,
C. H. N.
,
2000
, “
Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes
,” Proceedings of ASME Turbo Expo, p.
2000-GT-243
.
2.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
3.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
Milton Park, UK
, pp.
129
249
.
4.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
AIAA J. Propul. Power
,
22
(
2
), pp.
249
270
.
5.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.
6.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
7.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.
8.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
9.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine-Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
10.
L’Ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
, “
A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes
,” AGARD Heat Transfer and Cooling in Gas Turbines 12p. (SEE N86-29823 21-07), Provided by the Smithsonian/NASA Astrophysics Data System.
11.
Ito
,
S.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.
12.
Schwarz
,
S. G.
, and
Goldstein
,
R. J.
,
1989
, “
The Two-Dimensional Behavior of Film Cooling Jets on Concave Surfaces
,”
ASME J. Turbomach.
,
111
(
2
), pp.
124
130
.
13.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1977
, “
Film-Cooling With Large Density Differences Between the Mainstream and Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
4
), pp.
620
627
.
14.
Goldstein
,
R. J.
, and
Taylor
,
J. R.
,
1982
, “
Mass Transfer in the Neighborhood of Jets Entering a Crossflow
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(4), pp.
715
721
.
15.
Ericksen
,
V. L.
, and
Goldstein
,
R. J.
,
1974
, “
Heat Transfer and Film Cooling Following Injection Through Inclined Circular Holes
,”
ASME J. Heat Transfer-Trans. ASME
,
96
(
2
), pp.
239
145
.
16.
Goldstein
,
R. J.
, and
Yoshida
,
T.
,
1982
, “
The Influence of a Laminar Boundary Layer and Laminar Injection on Film Cooling Performance
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
2
), pp.
355
362
.
17.
Hay
,
N.
,
Lampard
,
D.
, and
Saluja
,
C. L.
,
1985
, “
Effects of Cooling Films on the Heat Transfer Coefficient on a Flat Plate With Zero Mainstream Pressure Gradient
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
105
110
.
18.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1990
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
3
), pp.
444
450
.
19.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
,
1997
, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
580
586
.
20.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
21.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
1991
, “
Effect of Acceleration on the Heat Transfer Coefficient on a Film-Cooled Surface
,”
ASME J. Turbomach.
,
113
(
3
), pp.
464
471
.
22.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2004
, “
Adiabatic Effectiveness and Heat Transfer Coefficient of Shaped Film Cooling Holes on a Scaled Guide Vane Pressure Side Model
,”
Int. J. Rotat. Mach.
,
10
, pp.
345
354
.
23.
Rutledge
,
J. L.
,
2004
, “
Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane
,” Master’s thesis, The University of Texas at Austin.
24.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer, Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
25.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
26.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
27.
Karni
,
J.
, and
Goldstein
,
R. J.
,
1990
, “
Surface Injection Effect on Mass Transfer From a Cylinder in Crossflow: A Simulation of Film Cooling in the Leading Edge Region of a Turbine Blade
,”
ASME J. Turbomach.
,
112
(
3
), pp.
418
427
.
28.
Mehendale
,
A. B.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1994
, “
Mainstream Turbulence Effect on Film Effectiveness and Heat Transfer Coefficient of a Gas Turbine Blade With Air and CO2 Film Injection
,”
Int. J. Heat Mass Transfer
,
37
, pp.
2707
2714
.
29.
Abuaf
,
N.
,
Bunker
,
R.
, and
Lee
,
C. P.
,
1997
, “
Heat Transfer and Film Cooling Effectiveness in a Linear Airfoil Cascade
,”
ASME J. Turbomach.
,
119
(
2
), pp.
302
309
.
30.
Drost
,
U.
, and
Bolcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
121
(
2
), pp.
233
242
.
31.
Poinsatte
,
P. E.
,
Heidman
,
J. D.
, and
Thurman
,
D. R.
,
2008
, “
Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade
,” Technical Report, National Aeronautics and Space Administration.
32.
Fontaneto
,
F.
,
2014
, “
Aero-Thermal Performance of a Film-Cooled High Pressure Turbine Blade/Vane: A Test Case for Numerical Codes Validation
,” Ph.D. thesis, University of Bergamo.
33.
Najafabadi
,
H. N.
,
Karlsson
,
M.
,
Kinell
,
M.
, and
Utriainen
,
E.
,
2014
, “
Film Cooling Jet Injection Effect in Heat Transfer Coefficient Augmentation for the Pressure Side Cooling of Turbine Vane
,” ASME Conference Proceedings, p.
GT2014-26055
.
34.
Najafabadi
,
H. N.
,
Karlsson
,
M.
,
Kinell
,
M.
, and
Utriainen
,
E.
,
2015
, “
Film-Cooling Performance of a Turbine Vane Suction Side: The Showerhead Effect on Film-Cooling Hole Placement for Cylindrical and Fan-Shaped Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091005
.
35.
Najafabadi
,
H. N.
,
Karlsson
,
M.
,
Kinell
,
M.
,
Utriainen
,
E.
, and
Wang
,
L.
,
2015
, “
Film-Cooling Performance of Multiple Arrays of Cylindrical and Fan-Shaped Holes
,”
J. Propul. Power
,
31
, pp.
1621
1630
.
36.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Engine-Like Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
.
37.
Ames
,
F. E.
,
1998a
, “
Aspects of Vane Film Cooling With High Turbulence: Part I – Heat Transfer
,”
ASME J. Turbomach.
,
120
(
4
), pp.
768
776
.
38.
Arts
,
T.
, and
Lambert de Rouvroit
,
M. L.
,
1992
, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
39.
Bacci
,
T.
,
Picchi
,
A.
,
Galeotti
,
S.
,
Facchini
,
B.
, and
Cubeda
,
S.
,
2022
, “
Heat Transfer Coefficient and Adiabatic Effectiveness on a Film-Cooled Pressure Side: Results and Assessment of the IR-Based Measurement Technique Reliability
,” ASME Conference Proceedings, Paper No. GT2022-81161.
40.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Turbomach.
,
7
(
1
), p.
011016
.
41.
Gourdain
,
N.
,
Gicquel
,
L. Y. M.
, and
Collado
,
E.
,
2012
, “
Comparison of RANS and LES for the Heat Transfer Prediction in Turbine Guide Vane
,”
J. Propul. Power.
,
28
(
2
), pp.
423
433
.
42.
Hoarau
,
J.-C.
,
Cinnella
,
P.
, and
Gloerfelt
,
X.
,
2019
, “
Large Eddy Simulation of Turbomachinery Flows Using a High-Order Implicit Residual Smoothing Scheme
,”
Comput. Fluids
,
198
, p.
104395
.
43.
Lee
,
C.-S.
,
Shih
,
T. I.-P.
, and
Bryden
,
K. M.
,
2017
, “
Effects of Averaging the Heat Transfer Coefficient on Predicted Material Temperature and Its Gradient
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
2
), p.
022002
.
44.
Bacci
,
T.
,
Picchi
,
A.
,
Facchini
,
B.
,
Lenzi
,
T.
, and
Innocenti
,
L.
,
2021
, “
Effect of Surface Roughness and Inlet Turbulence Intensity on a Turbine Nozzle Guide Vane External Heat Transfer: Experimental Investigation on a Literature Test Case
,”
ASME J. Turbomach.
,
143
(
4
), p.
041006
.
45.
Barigozzi
,
G.
,
Ravelli
,
S.
,
Armellini
,
A.
,
Mucignat
,
C.
, and
Casarsa
,
L.
,
2013
, “
Effects of Injection Conditions and Mach Number on Unsteadiness Arising Within Coolant Jets Over a Pressure Side Vane Surface
,”
Int. J. Heat Mass Transfer
,
67
(
0017-9310
), pp.
1220
1230
.
46.
Ames
,
F. E.
,
1998b
, “
Aspects of Vane Film Cooling With High Turbulence: Part II – Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
120
(
4
), pp.
777
784
.
You do not currently have access to this content.