Abstract

Ceramic materials are of significant interest in aviation and power generation gas turbine engines due to their low density and ability to withstand high temperatures. Increased cycle thermal efficiency and higher specific power output is possible by incorporating ceramic components that enable high turbine inlet temperatures and lower required cooling airflow levels. However, ceramics can be difficult and costly to form into the complex shapes used in gas turbine components, often requiring specialized multi-step processes. Furthermore, ceramic components in the hottest areas of a gas turbine, such as vanes or blade shroud seals, will still likely require cooling which is challenging to implement in conventional ceramic manufacturing approaches. Therefore, this study presents a multidisciplinary approach that investigates the design, fabrication, and overall cooling effectiveness evaluation of additively manufactured (AM), polymer derived ceramic (PDC) turbine vanes. A thermo-mechanically optimized vane design was generated, ceramic additive manufacturing of the complex cooling configuration was developed, and quantification of the increase in overall cooling effectiveness was performed in a 1X scale, high-speed facility using infrared thermography. This study produced a PDC AM process, capable of printing complex internal cooling schemes in 1X scale turbine vanes. It was found that the optimized vane more than doubled the overall cooling effectiveness observed in the baseline design, which reasonably agreed with thermomechanical optimization model predictions. Additionally, the optimized ceramic vane outperformed an identical metal vane, in terms of area averaged cooling effectiveness, suggesting that the ceramic vane could operate at reduced coolant flowrates to achieve comparable levels of cooling performance.

References

1.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Components in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
513
519
.
2.
Faulder
,
L.
,
McClain
,
J.
,
Edwards
,
B.
, and
Parthasarathy
,
V.
,
1998
, “
Ceramic Stationary Gas Turbine Development Program – Design and Test of a First Stage Ceramic Nozzle
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 5:Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
,
Stockholm, Sweden
,
June 2–5
, ASME, p. V005T13A014.
3.
Jimenez
,
O.
,
McClain
,
J.
,
Edwards
,
B.
,
Parthasarathy
,
V.
,
Bagheri
,
H.
, and
Bolander
,
G.
,
1998
, “
Ceramic Stationary Gas Turbine Development Program – Design and Test of a Ceramic Turbine Blade
,”
Proceedings of the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
,
Stockholm, Sweden
,
June 2–5
, ASME, p. V005T13A015.
4.
Miriyala
,
N.
,
Fahme
,
A.
, and
Van Roode
,
M.
,
2001
, “
Ceramic Stationary Gas Turbine Program – Combustor Liner Development Summary
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
,
New Orleans, LA
,
June 4–7
, ASME, p. V004T02A009.
5.
Price
,
J.
,
Jimenez
,
O.
,
Miriyala
,
N.
,
Kimmel
,
J. B.
,
Leroux
,
D. R.
, and
Fahme
,
T.
,
2001
, “
Ceramic Stationary Gas Turbine Development Program Eighth Annual Summary
,”
Proceedings of the ASME Turbo Expo 2001: Power for Land, Sea, and Air. Volume 4: Manufacturing Materials and Metallurgy;Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award
,
New Orleans, LA
,
June 4–7
, ASME, p. V004T02A014.
6.
Van Roode
,
M.
,
Jimenez
,
O.
,
McClain
,
J.
,
Price
,
J.
,
Parthasarathy
,
V.
,
Poormon
,
K. L.
,
Ferber
,
M. K.
, and
Lin
,
H. T.
,
2002
, “
Ceramic Gas Turbine Materials Impact Evaluation
,”
Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 4: Turbo Expo 2002, Parts A and B
,
Amsterdam, The Netherlands
,
June 3–6
,
American Society of Mechanical Engineers Digital Collection
, pp.
77
84
.
7.
Vedula
,
V.
,
Shi
,
J.
,
Jarmon
,
D.
,
Ochs
,
S.
,
Oni
,
L.
,
Lawton
,
T.
,
Green
,
K.
,
Prill
,
L.
,
Schaff
,
J.
,
Linsey
,
G.
, and
Zadrozny
,
G.
,
2005
, “
Ceramic Matrix Composite Turbine Vanes for Gas Turbine Engines
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2005
.
Reno, NV
,
June 6–9
,
American Society of Mechanical Engineers Digital Collection
, pp.
247
251
.
8.
“GE Recognized by the American Ceramics Society for World First Commercializing Ceramic Matrix Composites (CMCs) in Aircraft Engines | GE News,” https://www.ge.com/news/press-releases/ge-recognized-american-ceramics-society-world-first-commercializing-ceramic-matrix, Accessed June 21, 2021.
9.
van Roode
,
M.
,
2010
, “
Ceramic Gas Turbine Development: Need for a 10 Year Plan
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p. 011301.
10.
Kopeliovich
,
D.
,
2018
, “Advances in Manufacture of Ceramic Matrix Composites by Infiltration Techniques,”
Advances in Ceramic Matrix Composites
,
I. M.
Low
, ed., 2nd ed., Woodhead Publishing Series in Composites Science and Engineering,
Woodhead Publishing
,
Cambridge UK
, pp.
93
119
.
11.
Bansal
,
N. P.
, and
Lamon
,
J.
,
2014
,
Ceramic Matrix Composites: Materials, Modeling and Technology
,
Wiley Blackwell
,
Hoboken, NJ
.
12.
Bansal
,
N. P.
,
2005
,
Handbook of Ceramic Composites
,
Springer US
,
New York
.
13.
Bhatia
,
T.
,
Eaton
,
H.
,
Sun
,
E.
,
Lawton
,
T.
, and
Vedula
,
V.
,
2005
, “
Advanced Environmental Barrier Coatings for SiC/SiC Composites
,”
Proceedings of the ASME Turbo Expo 2005: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2005
.
Reno, NV
,
June 6–9
,
American Society of Mechanical Engineers Digital Collection
, pp.
253
258
.
14.
Bhatia
,
T.
,
Vedula
,
V.
,
Eaton
,
H.
,
Sun
,
E.
,
Holowczak
,
J.
, and
Linsey
,
G.
,
2004
, “
Development and Evaluation of Environmental Barrier Coatings for Si-Based Ceramics
,”
Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 2: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
,
American Society of Mechanical Engineers Digital Collection
, pp.
431
438
.
15.
Deckers
,
J.
,
Vleugels
,
J.
, and
Kruth
,
J. P.
,
2014
, “
Additive Manufacturing of Ceramics: A Review
,”
J. Ceram. Sci. Technol.
,
5
(
4
), pp.
245
260
.
16.
Lakhdar
,
Y.
,
Tuck
,
C.
,
Binner
,
J.
,
Terry
,
A.
, and
Goodridge
,
R.
,
2021
, “
Additive Manufacturing of Advanced Ceramic Materials
,”
Prog. Mater. Sci.
,
116
, p.
100736
.
17.
Zocca
,
A.
,
Colombo
,
P.
,
Gomes
,
C. M.
, and
Günster
,
J.
,
2015
, “
Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities
,”
J. Am. Ceram. Soc.
,
98
(
7
), pp.
1983
2001
.
18.
He
,
R.
,
Zhou
,
N.
,
Zhang
,
K.
,
Zhang
,
X.
,
Zhang
,
L.
,
Wang
,
W.
, and
Fang
,
D.
,
2021
, “
Progress and Challenges Towards Additive Manufacturing of SiC Ceramic
,”
J. Adv. Ceram.
,
10
(
4
), pp.
637
674
.
19.
Eckel
,
Z. C.
,
Zhou
,
C.
,
Martin
,
J. H.
,
Jacobsen
,
A. J.
,
Carter
,
W. B.
, and
Schaedler
,
T. A.
,
2016
, “
Additive Manufacturing of Polymer-Derived Ceramics
,”
Science
,
351
(
6268
), pp.
58
62
.
20.
Wang
,
M.
,
Xie
,
C.
,
He
,
R.
,
Ding
,
G.
,
Zhang
,
K.
,
Wang
,
G.
, and
Fang
,
D.
,
2019
, “
Polymer-Derived Silicon Nitride Ceramics by Digital Light Processing Based Additive Manufacturing
,”
J. Am. Ceram. Soc.
,
102
(
9
), pp.
5117
5126
.
21.
Brinckmann
,
S. A.
,
Young
,
J. C.
,
Fertig
,
R. S.
, and
Frick
,
C. P.
,
2023
, “
Effect of Print Direction on Mechanical Properties of 3D Printed Polymer-Derived Ceramics and Their Precursors
,”
Mater. Lett. X
,
17
, p.
100179
.
22.
Brinckmann
,
S. A.
,
Patra
,
N.
,
Yao
,
J.
,
Ware
,
T. H.
,
Frick
,
C. P.
, and
Fertig
,
R. S.
, III
,
2018
, “
Stereolithography of SiOC Polymer-Derived Ceramics Filled with SiC Micronwhiskers
,”
Adv. Eng. Mater.
,
20
(
11
), p.
1800593
.
23.
O’Masta
,
M. R.
,
Stonkevitch
,
E.
,
Porter
,
K. A.
,
Bui
,
P. P.
,
Eckel
,
Z. C.
, and
Schaedler
,
T. A.
,
2020
, “
Additive Manufacturing of Polymer-Derived Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
103
(
12
), pp.
6712
6723
.
24.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York, NY
, pp.
1
844
.
25.
Zhang
,
S.
,
Shen
,
X.
,
Li
,
Z.
,
Liu
,
X.
, and
Dong
,
S.
,
2022
, “
Strength Analysis of Two-Dimensional Ceramic-Matrix-Composite Guide Vane Based on Bimodulus Constitutive Model
,”
AIAA J.
,
60
(
11
), pp.
6420
6435
.
26.
Bryant
,
C. E.
, and
Rutledge
,
J. L.
,
2021
, “
Conjugate Heat Transfer Simulations to Evaluate the Effect of Anisotropic Thermal Conductivity on Overall Cooling Effectiveness
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
6
), p. 061013.
27.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Quach
,
S.
, and
Vincent
,
T.
,
2021
, “
Experimental Heat Transfer and Boundary Layer Measurements on a Ceramic Matrix Composite Surface
,”
ASME J. Turbomach.
,
143
(
6
), p. 061010.
28.
Wilkins
,
P. H.
,
Lynch
,
S. P.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Quach
,
S.
, and
Kaufman
,
E.
,
2022
, “
Experimental Investigation Into the Effect of a Ceramic Matrix Composite Surface on Film Cooling
,”
ASME J. Turbomach.
,
144
(
12
), p. 121006.
29.
Cory
,
T. M.
,
Edelson
,
R. D.
,
Thole
,
K. A.
,
Vincent
,
T.
,
Whitney
,
P.
, and
Mongillo
,
D.
,
2022
, “
Impact of Ceramic Matrix Composite Topology on Friction Factor and Heat Transfer
,”
ASME J. Turbomach.
,
144
(
3
), p. 031003.
30.
Edelson
,
R. D.
, and
Thole
,
K. A.
,
2023
, “
Impact of Ceramic Matrix Composite Topology on Overall Effectiveness
,”
ASME J. Turbomach.
,
145
(
3
), p. 031016.
31.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes.”
32.
Stabler
,
C.
,
Reitz
,
A.
,
Stein
,
P.
,
Albert
,
B.
,
Riedel
,
R.
, and
Ionescu
,
E.
,
2018
, “
Thermal Properties of SiOC Glasses and Glass Ceramics at Elevated Temperatures
,”
Materials
,
11
(
2
), p.
279
.
33.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Zuccarello
,
J. T.
,
Saltzman
,
D.
,
Lynch
,
S. P.
,
Haydt
,
S.
, and
Whitfield
,
C. A.
,
2020
, “
A Steady Transonic Linear Cascade for True Scale Cooling Measurements
,”
Proceedings of ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Volume 7C: Heat Transfer
,
Virtual, Online
,
Sept. 21–25
, ASME, p. V07CT13A001.
35.
Rusted
,
A.
, and
Lynch
,
S.
,
2021
, “
Determining Total Pressure Fields From Velocimetry Measurements in a Transonic Turbine Flowfield
,”
Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. Volume 2B: Turbomachinery—Axial Flow Turbine Aerodynamics; Deposition, Erosion, Fouling, and Icing
,
Virtual, Online
,
June 7–11
, ASME, p. V02BT32A009.
36.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.