Abstract

In modern gas turbines, the reduction of pollutant emissions can be achieved by employing lean-burn combustors. At the combustion chamber outlet, the flow is non-uniform and characterized by a residual swirl superimposed to steady (hot streak) and unsteady (entropy waves) temperature disturbances. During the transport from the combustor outlet to the turbine inlet, these disturbances are weakly dissipated and persist at the turbine inlet. Therefore, the interaction between the combustor non-uniformities and the turbine has to be deeply studied. To study combustor–turbine interaction experimentally, a common practice is to install combustor simulators on non-reactive turbine test facilities. For this purpose, a combustor simulator was designed and installed at the Politecnico di Milano turbine test facility. This device can generate a combined steady/unsteady temperature disturbance and swirl profile at the turbine inlet. Using this layout, several experimental campaigns have been carried out changing the type of injected disturbance, the injection position, and the turbine operating condition. In this paper, the data collected from these experiments have been used to develop simplified models to predict the transport and dissipation of combustor perturbations through a turbine's first stage. In the open literature, few attempts are discussed regarding the modeling of combustor–turbine interaction that—in authors’ opinion—represents an important tool for preliminary turbine design.

References

1.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
,
1997
, “
Proceedings of the ASME 1997
,”
International Gas Turbine and Aeroengine Congress and Exhibition. Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Orlando, FL
.
2.
Jacobi
,
S.
,
Mazzoni
,
C.
,
Rosic
,
B.
, and
Chana
,
K.
,
2017
, “
Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl
,”
ASME J. Turbomach.
,
139
(
4
), p.
041006
.
3.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.
4.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
5.
Hawthorne
,
W. R.
,
1951
, “
Secondary Circulation in Fluid Flow
,”
Proc. R. Soc. A
,
206
(
1086
), pp.
374
387
.
6.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
,
1989
, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propuls. Power
,
5
(
1
), pp.
64
71
.
7.
Beard
,
P. F.
,
Smith
,
A.
, and
Povey
,
T.
,
2012
, “
Impact of Severe Temperature Distortion on Turbine Efficiency
,”
ASME J. Turbomach.
,
135
(
1
), p.
011018
.
8.
Gaetani
,
P.
, and
Persico
,
G.
,
2017
, “
Hot Streak Evolution in an Axial HP Turbine Stage
,”
Int. J. Turbomach. Propuls. Power
,
2
(
2
), p.
6
.
9.
Gaetani
,
P.
,
Persico
,
G.
,
Pinelli
,
L.
,
Marconcini
,
M.
, and
Pacciani
,
R.
,
2020
, “
Computational and Experimental Study of Hot Streak Transport Within the First Stage of a Gas Turbine
,”
ASME J. Turbomach.
,
142
(
8
), p.
081002
.
10.
Beard
,
P. F.
,
Smith
,
A. D.
, and
Povey
,
T.
,
2013
, “
Effect of Combustor Swirl on Transonic High Pressure Turbine Efficiency
,”
ASME J. Turbomach.
,
136
(
1
), p.
011002
.
11.
Qureshi
,
I.
,
Beretta
,
A.
,
Chana
,
K.
, and
Povey
,
T.
,
2012
, “
Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine
,”
ASME J. Turbomach.
,
134
(
6
), p.
061023
.
12.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2016
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.
13.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H. P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propuls. Power
,
2
(
3
), p.
12
.
14.
Khanal
,
B.
,
He
,
L.
,
Northall
,
J.
, and
Adami
,
P.
,
2013
, “
Analysis of Radial Migration of Hot-Streak in Swirling Flow Through High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
135
(
4
), p.
041005
.
15.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.
16.
Adams
,
M. G.
,
Beard
,
P. F.
,
Stokes
,
M. R.
,
Wallin
,
F.
,
Chana
,
K. S.
, and
Povey
,
T.
,
2021
, “
Effects of a Combined Hot-Streak and Swirl Profile on Cooled 1.5-Stage Turbine Aerodynamics: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
143
(
2
), p.
021011
.
17.
Bacci
,
T.
,
Lenzi
,
T.
,
Picchi
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2019
, “
Flow Field and Hot Streak Migration Through a High Pressure Cooled Vanes With Representative Lean Burn Combustor Outflow
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041020
.
18.
Mansouri
,
Z.
, and
Jefferson-Loveday
,
R.
,
2022
, “
Heat Transfer Characteristics of a High-Pressure Turbine Under Combined Distorted hot-Streak and Residual Swirl: An Unsteady Computational Study
,”
Int. J. Heat Mass Transfer
,
195
, p.
123143
.
19.
Wang
,
Z.
,
Wang
,
Z.
,
Zhang
,
W.
, and
Feng
,
Z.
,
2021
, “
Numerical Study on Unsteady Film Cooling Performance of Turbine Rotor Considering Influences of Inlet Non-Uniformities and Upstream Coolant
,”
Aerosp. Sci. Technol.
,
119
, p.
107089
.
20.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2020
, “
Design and Commissioning of a Combustor Simulator Combining Swirl and Entropy Wave Generation
,”
Int. J. Turbomach. Propuls. Power
,
5
(
4
), p.
27
.
21.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Role of Turbine Operating Conditions on Combustor-Turbine Interaction—Part 1: Change in Expansion Ratio
,”
ASME J. Turbomach.
,
145
(
5
), p.
051001
.
22.
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Role of Turbine Operating Conditions on Combustor-Turbine Interaction—Part 2: Loading Effects
,”
ASME J. Turbomach.
,
145
(
5
), p.
051002
.
23.
Pinelli
,
L.
,
Marconcini
,
M.
,
Pacciani
,
R.
,
Notaristefano
,
A.
, and
Gaetani
,
P.
,
2023
, “
The Effect of Swirling Flows in Entropy Wave Convection Through High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
145
(
3
), p.
031004
.
24.
Notaristefano
,
A.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Fusetti
,
A.
,
2021
, “
Uncertainty Evaluation on Multi-Hole Aerodynamic Pressure Probes
,”
ASME J. Turbomach.
,
143
(
9
), p.
091001
.
25.
Persico
,
G.
,
Gaetani
,
P.
, and
Guardone
,
A.
,
2005
, “
Design and Analysis of a New Concept Fast-Response Pressure Probes
,”
Meas. Sci. Technol.
,
16
.
26.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
111
119
.
27.
Aungier
,
R.
,
2006
,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME Press
,
New York
.
28.
Hawthorne
,
W. R.
,
1955
, “Some Formulae for the Calculation of Secondary Flows in Cascades,” Aero. Research Council Report No. 17.519.
29.
Gregory-Smith
,
D. G.
,
1982
, “
Secondary Flows and Losses in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
104
(
4
), pp.
819
822
.
30.
Massardo
,
A. F.
, and
Satta
,
A.
,
1985
, “
A Correlation for the Secondary Deviation Angle
,”
Proceedings of the ASME International Gas Turbine Symposium and Exposition
,
Beijing, China
,
Sept. 1–7
.
31.
D’Ippolito
,
G.
,
Dossena
,
V.
, and
Mora
,
A.
,
2011
, “
The Influence of Blade Lean on Straight and Annular Turbine Cascade Flow Field
,”
ASME J. Turbomach.
,
133
(
1
), p.
011013
.
32.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
(
2
), pp.
193
200
.
33.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2006
, “
An Empirical Prediction Method For Secondary Losses in Turbines—Part II: A New Secondary Loss Correlation
,”
ASME J. Turbomach.
,
128
(
2
), pp.
281
291
.
34.
Denton
,
J. D.
, and
Xu
,
L.
,
1998
, “
The Exploitation of Three-Dimensional Flow in Turbomachinery Design
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
213
(
2
), pp.
125
137
.
35.
Park
,
H. D.
, and
Chung
,
M. K.
,
1992
, “
Refinement of Spanwise Distribution Models of Deviation Angle and Secondary Loss for Axial Flow Turbine
,”
Mech. Res. Commun.
,
19
(
5
), pp.
449
455
.
36.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.
37.
Christodoulou
,
L.
,
Karimi
,
N.
,
Cammarano
,
A.
,
Paul
,
M.
, and
Navarro-Martinez
,
S.
,
2020
, “
State Prediction of an Entropy Wave Advecting Through a Turbulent Channel Flow
,”
J. Fluid Mech.
,
882
, p.
A8
.
38.
Gaetani
,
P.
, and
Persico
,
G.
,
2019
, “
Transport of Entropy Waves Within a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
141
(
3
), p.
031006
.
39.
Prasad
,
D.
, and
Hendricks
,
G. J.
,
2000
, “
A Numerical Study of Secondary Flow in Axial Turbines With Application to Radial Transport of Hot Streaks
,”
ASME J. Turbomach.
,
122
(
4
), pp.
667
673
.
40.
Jenkins
,
S. C.
, and
Bogard
,
D. G.
,
2009
, “
Superposition Predictions of the Reduction of Hot Streaks by Coolant From a Film-Cooled Guide Vane
,”
ASME J. Turbomach.
,
131
(
4
), p.
041002
.
41.
Dorney
,
D. J.
,
1997
, “
Investigation of Hot Streak Temperature Ratio Scaling Effects
,”
Int. J. Turbo Jet Eng.
,
14
(
4
), pp.
217
227
.
You do not currently have access to this content.