Abstract

There is great interest in the usage of ceramic matrix composites (CMC) as a turbine blade material. However, depending on the manufacturing process of the CMC, blades may have a thicker trailing edge. The design space therefore needs to be updated due to the resulting flow physics. Recently, experimental results acquired at the NASA Glenn Transonic Turbine Blade Cascade Rig showed that a loss measure generally increased with increasing trailing edge thickness. For some cases, however, the general downward trend of the loss with increasing Reynolds number (Re) was interrupted by a local loss peak around Re ∼1.24 × 106, and then subsequently dropped to the original pre-peak trend. A possible cause of this intriguing phenomenon was speculated to be transonic vortex shedding, which is the mechanism of vortex shedding promoted by reflected shed pressure waves at the trailing edge at relatively high Reynolds numbers and transonic Mach numbers. A Reynolds-averaged Navier–Stokes analysis or an under-resolved large eddy simulation (LES) does not reproduce this apparent anomaly and thus a highly-resolved LES (the total mesh count of ∼290 million cells) was performed to investigate the aerodynamics of the CMC blade. The numerical results at Re = 1,246,350 show that the pressure waves generated by the vortex shedding in the wake travel upstream and significantly influence the transition and separation on the suction side thus enhancing the vortex shedding in the wake. This feedback does not hold under a low-Re condition (Re = 621,900). The Reynolds number dependence was also examined by numerical perturbation of the pressure waves in the wake and by examining how such perturbation attenuates or endures. It is confirmed that the perturbation of the pressure waves is quickly damped below a set Reynolds number.

References

1.
Boyle
,
R. J.
,
Gnanaselvam
,
P.
,
Parikh
,
A. H.
,
Ameri
,
A. A.
,
Bons
,
J. P.
, and
Nagpal
,
V. K.
,
2021
, “
Design of Stress Constrained SiC/SiC Ceramic Matrix Composite Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051013
.
2.
Giel
,
P.
,
Shyam
,
V.
,
Juangphanich
,
P.
, and
Clark
,
J. P.
,
2020
, “
Effects of Trailing Edge Thickness and Blade Loading Distribution on the Aerodynamic Performance of Simulated CMC Turbine Blades
,”
Proceedings of the ASME Turbo Expo
,
Virtual, Online
, Paper No. GT2020-15802.
3.
Cicatelli
,
G.
, and
Sieverding
,
C. H.
,
1996
, “
A Review of the Research on Unsteady Turbine Blade Wake Characteristics
,”
Loss Mechanisms and Unsteady Flows in Turbomachinery,” AGARD CP 571; AGARD
,
Neuilly-Sur-Seine, France
,
May 5
.
4.
Gerrard
,
J. H.
,
1966
, “
The Mechanics of the Formation Region of Vortices Behind Bluff Bodies
,”
J. Fluid Mech.
,
25
(
2
), pp.
401
413
.
5.
Lienhard
,
J. H.
,
1966
,
Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders
,
Technical Extension Service, College Engineering, Washington State University
,
Pullman, WA
.
6.
Hoffmann
,
J.
, and
Weiss
,
D. A.
,
2023
, “
Compressible and Viscous Effects in Transonic Planar Flow Around a Circular Cylinder—A Numerical Analysis Based on a Commercially Available CFD Tool
,”
Fluids
,
2023
(
8
), p.
182
.
7.
Carscallen
,
W. E.
,
Fleige
,
H. U.
, and
Gostelow
,
J. P.
,
1996
, “
Transonic Turbine Vane Wake Flows
,”
ASME International Gas Turbine and Aeroengine Congress and Exhibition
,
Birmingham, UK
,
June 10–13
.
8.
Sieverding
,
C. H.
,
Ottolia
,
D.
,
Bagnera
,
C.
,
Comadoro
,
A.
,
Brouckaert
,
J.-F.
, and
Desse
,
J.-M.
,
2004
, “
Unsteady Turbine Blade Wake Characteristics
,”
ASME J. Turbomach.
,
126
(
4
), pp.
551
559
.
9.
El-Gendi
,
M. M.
,
Ibrahim
,
M. K.
,
Mori
,
K.
, and
Nakamura
,
Y.
,
2010
, “
Energy Separation in High Subsonic Turbine Cascade
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
52
(
178
), pp.
206
212
.
10.
Vagnoli
,
S.
,
Verstraete
,
T.
,
Mateos
,
B.
, and
Sieverding
,
C.
,
2015
, “
Prediction of the Unsteady Turbine Trailing Edge Wake Flow Characteristics and Comparison With Experimental Data
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
229
(
5
), pp.
487
497
.
11.
Wang
,
S.
,
Wen
,
F.
,
Zhang
,
S.
,
Zhang
,
S.
, and
Zhou
,
X.
,
2018
, “
Influence of Trailing Boundary Layer Velocity Profiles on Wake Vortex Formation in a High Subsonic Turbine Cascade
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
233
(
2
), pp.
186
198
.
12.
Leonard
,
T.
,
Gicquel
,
L. Y. M.
,
Gourdain
,
N.
, and
Duchaine
,
F.
,
2015
, “
Steady/Unsteady Reynolds Averaged Navier-Stokes and Large Eddy Simulation of a Turbine Blade at High Subsonic Outlet Mach Number
,”
ASME J. Turbomach.
,
13
(
4
), p.
041001
.
13.
Chapman
,
D.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.
14.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.
15.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
10054
.
16.
Ameri
,
A.
,
2016
, “
Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows
,” Technical Report, NASA/CR, 2016-218962.
17.
Papadogiannis
,
D.
,
Duchaine
,
F.
,
Sicot
,
F.
,
Gicquel
,
L.
,
Wang
,
G.
, and
Moreau
,
S.
,
2014
, “
Large Eddy Simulation of a High Pressure Turbine Stage: Effects on Sub-Grid Scale Modeling and Mesh Resolution
,”
Proceedings of the ASME Turbo Expo 2014 Gas Turbine Technical Congress and Exposition
, Paper No. GT 2014-25876.
18.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Vane Subject to Large Disturbances: Effect of Exit Mach Number on Losses
,”
ASME J. Turbomach.
,
143
(
9
), p.
091002
.
19.
Nardini
,
M.
,
Jelly
,
T. O.
,
Kozul
,
M.
,
Sandberg
,
R. D.
,
Vitt
,
P.
, and
Sluyter
,
G.
,
2024
, “
Direct Numerical Simulation of Transitional and Turbulent Flows Over Multi-scale Surface Roughness—Part II: The Effect of Roughness on the Performance of a High-Pressure Turbine Blade
,”
ASME J. Turbomach.
,
146
(
3
), p.
031009
.
20.
Rossiter
,
A. D.
,
Pullan
,
G.
, and
Melzer
,
A. P.
,
2023
, “
The Influence of Boundary Layer State and Trailing Edge Wedge Angle on the Aerodynamic Performance of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
145
(
4
), p.
041008
.
21.
Melzer
,
A. P.
, and
Pullan
,
G.
,
2019
, “
The Role of Vortex Shedding in the Trailing Edge Loss of Transonic Turbine Blades
,”
ASME J. Turbomach.
,
141
(
4
), p.
041001
.
22.
Steinthorsson
,
E.
,
Liou
,
M.-S.
, and
Povinelli
,
L.
,
1993
, “
Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries
,”
Proceedings of the 29th Joint Propulsion Conference and Exhibit
, AIAA Paper No. 1993-2380.
23.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
24.
Kim
,
W.-W.
, and
Menon
,
S.
,
1995
, “
A New Dynamic One-Equation Subgrid-Scale Model for Large Eddy Simulations
,”
Proceedings of the 33rd AIAA Aerospace Sciences Meeting and Exhibit
,
Jan. 1995
, AIAA Paper 1995-356.
25.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
. http://dx.doi.org/10.1063/1.858280
26.
Miki
,
K.
, and
Ameri
,
A.
,
2021
, “
Large-Eddy Simulation of Variable Speed Power Turbine Cascade With Inflow Turbulence
,”
ASME J. Turbomach.
,
143
(
8
), p.
081006
.
27.
Miki
,
K.
, and
Ameri
,
A.
,
2022
, “
Improved Prediction of Losses With Large Eddy Simulation in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
7
), p.
071002
.
28.
Miki
,
K.
, and
Ameri
,
A.
,
2023
, “
The Effect of Trailing Edge Grid Resolution in Large-Eddy Simulations
,”
Proceedings of the ASME Turbo Expo, Gas Turbine Technical Congress and Exposition
, Paper No. GT2023-102276.
29.
Miki
,
K.
, and
Ameri
,
A.
,
2024
, “
Numerical Investigation of the Effect of Trailing Edge Thickness of Simulated CMC Blades on Loss Profiles
,”
ASME J. Turbomach.
, (in print), Paper No. GT2022-82335.
30.
Thurman
,
D.
,
Flegel
,
A.
, and
Giel
,
P.
,
2014
, “
Inlet Turbulence and Length Scale Measurements in a Large-Scale Transonic Turbine Cascade
,”
Proceedings of the 50th AIAA Joint Propulsion Conference
, Paper No. AIAA 2014-3934.
31.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
32.
Han
,
L. S.
, and
Cox
,
W. R.
,
1982
, “
A Visual Study of Turbine Blade Pressure Side Boundary Layer
,”
Proceedings of the ASME 1982 International Gas Turbine Conference and Exhibit
,
London, UK
,
Apr. 18–22
, ASME Paper No. 82-GT47.
You do not currently have access to this content.