Abstract

In this paper, we quantify the turbulence modeling uncertainty for the transonic Technische Universität Darmstadt (TUDa) compressor. The present work applies the Eigenspace Perturbation Framework (EPF) as it is the only published physics-based framework capable of addressing the model-form uncertainty in turbulence closure modeling. To sample from the possible solution space and obtain the modeling uncertainty, we perform simulations perturbing the eigenvalues of the Reynolds stress tensor in addition to simulations using an unperturbed turbulence model. We show that the shape of the Reynolds stress tensor ellipsoid has significant impact on the evolution of turbulence, flow separation, vortex systems, shock-boundary layer interaction, and finally the overall performance of the compressor. We compare the estimated uncertainties with available measurements and transitional Delayed Detached-Eddy Simulations (DDES). This allows us to assess the confidence of the chosen turbulence model and to evaluate the sharpness and coverage of the resulting uncertainty bounds. Thus, the EPF is comprehensively validated and suggestions for its future applicability with respect to turbomachinery components are made.

References

1.
Speziale
,
C. G.
,
1991
, “
Analytical Methods for the Development of Reynolds-Stress Closures in Turbulence
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
107
157
.
2.
Mompean
,
G.
,
Gavrilakis
,
S.
,
Machiels
,
L.
, and
Deville
,
M.
,
1996
, “
On Predicting the Turbulence-Induced Secondary Flows Using Nonlinear K–ϵ Models
,”
Phys. Fluids
,
8
(
7
), pp.
1856
1868
.
3.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1996
, “
Development and Application of a Cubic Eddy-Viscosity Model of Turbulence
,”
Int. J. Heat Fluid Flow
,
17
(
2
), pp.
108
115
.
4.
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1994
, “
Assessment of Turbulence-Transport Models Including Non-linear RNG Eddy-Viscosity Formulation and Second-Moment Closure for Flow Over a Backward-Facing Step
,”
Comput. Fluids
,
23
(
8
), pp.
983
1004
.
5.
Oberkampf
,
W.
, and
Roy
,
C.
,
2010
,
Verification and Validation in Scientific Computing
,
Cambridge University Press
,
Cambridge
.
6.
Karniadakis
,
G.
,
2002
, “
Quantifying Uncertainty in CFD
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
2
3
.
7.
Zang
,
T.
,
Hemsch
,
M.
,
Hilburger
,
M.
,
Kenny
,
S.
,
Luckring
,
J.
,
Maghami
,
P.
,
Padula
,
S.
, and
Stroud
,
W.
,
2020
,
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,
NASA
,
Langley Research Center
.
8.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
51
), pp.
357
377
.
9.
Xiao
,
H.
, and
Cinnella
,
P.
,
2019
, “
Quantification of Model Uncertainty in RANS Simulations: A Review
,”
Prog. Aerosp. Sci.
,
108
, pp.
1
31
.
10.
Emory
,
M.
,
Larsson
,
J.
, and
Iaccarino
,
G.
,
2013
, “
Modeling of Structural Uncertainties in Reynolds-Averaged Navier–Stokes Closures
,”
Phys. Fluids
,
25
(
11
), p.
110822
.
11.
Mukhopadhaya
,
J.
,
Whitehead
,
B. T.
,
Quindlen
,
J. F.
,
Alonso
,
J. J.
, and
Cary
,
A. W.
,
2020
, “
Multi-fidelity Modeling of Probabilistic Aerodynamic Databases for Use in Aerospace Engineering
,”
Int. J. Uncertain. Quantif.
,
10
(
5
), pp.
425
447
.
12.
Lamberti
,
G.
, and
Gorlé
,
C.
,
2019
, “Uncertainty Quantification for RANS Predictions of Wind Loads on Buildings,” Proceedings of the XV Conference of the Italian Association for Wind Engineering, IN VENTO 2018,
Springer International Publishing
,
Cham
, pp.
402
412
.
13.
Hornshøj-Møller
,
S. D.
,
Nielsen
,
P. D.
,
Forooghi
,
P.
, and
Abkar
,
M.
,
2021
, “
Quantifying Structural Uncertainties in Reynolds-Averaged Navier–Stokes Simulations of Wind Turbine Wakes
,”
Renew. Energy
,
164
, pp.
1550
1558
.
14.
Eidi
,
A.
,
Ghiassi
,
R.
,
Yang
,
X.
, and
Abkar
,
M.
,
2021
, “
Model-Form Uncertainty Quantification in RANS Simulations of Wakes and Power Losses in Wind Farms
,”
Renew. Energy
,
179
, pp.
2212
2223
.
15.
Emory
,
M.
,
Iaccarino
,
G.
, and
Laskowski
,
G. M.
,
2016
, “
Uncertainty Quantification in Turbomachinery Simulations
,”
Turbo Expo: Power for Land, Sea, and Air
,
Seoul, South Korea
,
American Society of Mechanical Engineers
, p.
V02CT39A028
.
16.
Geiser
,
G.
,
Wellner
,
J.
,
Kügeler
,
E.
,
Weber
,
A.
, and
Moors
,
A.
,
2019
, “
On the Simulation and Spectral Analysis of Unsteady Turbulence and Transition Effects in a Multistage Low Pressure Turbine
,”
ASME J. Turbomach.
,
141
(
5
), p.
051012
.
17.
Matha
,
M.
,
Kucharczyk
,
K.
, and
Morsbach
,
C.
,
2023
, “
Evaluation of Physics Constrained Data-Driven Methods for Turbulence Model Uncertainty Quantification
,”
Comput. Fluids
,
255
, p.
105837
.
18.
Matha
,
M.
, and
Morsbach
,
C.
,
2023
, “
Improved Self-consistency of the Reynolds Stress Tensor Eigenspace Perturbation for Uncertainty Quantification
,”
Phys. Fluids
,
35
(
6
), p.
065130
.
19.
Matha
,
M.
, and
Morsbach
,
C.
,
2024
, “
Physically Constrained Eigenspace Perturbation for Turbulence Model Uncertainty Estimation
,”
Phys. Fluids
,
36
(
2
), p.
025153
.
20.
Klausmann
,
F.
,
Franke
,
D.
,
Foret
,
J.
, and
Schiffer
,
H.-P.
,
2022
, “
Transonic Compressor Darmstadt—Open Test Case Introduction of the TUDa Open Test Case
,”
J. Global Power Propuls. Soc.
,
6
, pp.
318
329
.
21.
He
,
X.
,
Zhu
,
M.
,
Xia
,
K.
,
Fabian
,
K. S.
,
Teng
,
J.
, and
Vahdati
,
M.
,
2023
, “
Validation and Verification of RANS Solvers for TUDa-GLR-OpenStage Transonic Axial Compressor
,”
J. Global Power Propuls. Soc.
,
7
, pp.
13
29
.
22.
Xia
,
K.
,
He
,
X.
,
Zhu
,
M.
,
Klausmann
,
F. S.
,
Teng
,
J.
, and
Vahdati
,
M.
,
2023
, “
Endwall Geometric Uncertainty and Error on the Performance of TUDA-GLR-OpenStage Transonic Axial Compressor
,”
J. Global Power Propuls. Soc.
,
7
, pp.
113
126
.
23.
He
,
X.
, and
Klausmann
,
F.
,
2024
, “
RANS Capabilities for Transonic Axial Compressor: A Perspective From GPPS CFD Workshop
,”
ASME J. Turbomach.
,
147
(
2
), p.
021007
.
24.
Emory
,
M.
,
Pecnik
,
R.
, and
Iaccarino
,
G.
,
2011
,
Modeling Structural Uncertainties in Reynolds-Averaged Computations of Shock/Boundary Layer Interactions
,
AIAA
.
25.
Iaccarino
,
G.
,
Mishra
,
A. A.
, and
Ghili
,
S.
,
2017
, “
Eigenspace Perturbations for Uncertainty Estimation of Single-Point Turbulence Closures
,”
Phys. Rev. Fluids
,
2
(
2
), p.
024605
.
26.
Mishra
,
A. A.
, and
Iaccarino
,
G.
,
2019
, “
Theoretical Analysis of Tensor Perturbations for Uncertainty Quantification of Reynolds Averaged and Subgrid Scale Closures
,”
Phys. Fluids
,
31
(
7
), p.
075101
.
27.
Schumann
,
U.
,
1977
, “
Realizability of Reynolds-Stress Turbulence Models
,”
Phys. Fluids
,
20
, pp.
721
725
.
28.
Banerjee
,
S.
,
Krahl
,
R.
,
Durst
,
F.
, and
Zenger
,
C.
,
2007
, “
Presentation of Anisotropy Properties of Turbulence, Invariants Versus Eigenvalue Approaches
,”
J. Turbul.
,
8
, p.
N32
.
29.
Gorlé
,
C.
, and
Iaccarino
,
G.
,
2013
, “
A Framework for Epistemic Uncertainty Quantification of Turbulent Scalar Flux Models for Reynolds-Averaged Navier–Stokes Simulations
,”
Phys. Fluids
,
25
(
5
), p.
055105
.
30.
Heyse
,
J. F.
,
Mishra
,
A. A.
, and
Iaccarino
,
G.
,
2021
, “
Estimating RANS Model Uncertainty Using Machine Learning
,”
J. Global Power Propuls. Soc.
, pp.
1
14
.
31.
Morsbach
,
C.
,
2017
, “Reynolds Stress Modelling for Turbomachinery Flow Applications,” Ph.D. thesis, German Aerospace Center, Teschnische Universität Darmstadt, Darmstadt.
32.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R. B.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
, pp.
625
632
.
33.
Möller
,
F. M.
,
Tucker
,
P. G.
,
Wang
,
Z.-N.
,
Bode
,
C.
,
Morsbach
,
C.
,
Matha
,
M.
, and
Sivel
,
P.
,
2024
, “
Advanced Methods for Assessing Flow Physics of the TU Darmstadt Compressor Stage: Part 1—Transitional Delayed Detached-Eddy Simulation
,”
Turbomachinery Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions
, Vol. 12C,
London
.
34.
Schlüß
,
D.
,
Frey
,
C.
, and
Ashcroft
,
G.
,
2016
, “
Consistent Non-reflecting Boundary Conditions for Both Steady and Unsteady Flow Simulations in Turbomachinery Applications
,”
7th European Congress on Computational Methods in Applied Sciences and Engineering
,
Crete, Greece
, pp.
7403
7422
. .
35.
Emory
,
M. A.
,
2014
, “
Estimating Model-Form Uncertainty in Reynolds-Averaged Navier–Stokes Closures
,” Ph.D. thesis, Stanford University, Department of Mechanical Engineering, Stanford, CA.
36.
Gorlé
,
C.
,
Zeoli
,
S.
,
Emory
,
M.
,
Larsson
,
J.
, and
Iaccarino
,
G.
,
2019
, “
Epistemic Uncertainty Quantification for Reynolds-Averaged Navier–Stokes Modeling of Separated Flows Over Streamlined Surfaces
,”
Phys. Fluids
,
31
(
3
), p.
035101
.
37.
Kato
,
M.
, and
Launder
,
B.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
9th Symposium on Turbulent Shear Flows
,
Kyoto, Japan
, pp.
1041
1046
.
38.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Rogallo
,
R. S.
,
1985
, “
Effect of Rotation on Isotropic Turbulence: Computation and Modelling
,”
J. Fluid Mech.
,
154
, pp.
321
336
.
39.
Klausmann
,
F.
,
Kilian
,
N.
,
He
,
X.
,
Franke
,
D.
,
Schmidt
,
B.
, and
Schiffer
,
H.-P.
,
2024
, “
Transonic Compressor Darmstadt Open Test Case: Experimental Investigation of Stator Secondary Flows and Hub Leakage
,”
ASME J. Turbomach.
,
146
(
10
), p.
101007
.
You do not currently have access to this content.