A unified approach to systematically derive the dynamic equations for flexible bodies is proposed. This approach is not limited to a particular definition of the field of kinematic representation of deformation. Dynamics of flexible bodies in arbitrary spatial motion experiencing small and large elastic deflections are considered. Two test cases are analyzed via the unified approach. For the first case, linear partial differential equations based on the Euler-Bernoulli beam theory with the von Ka´rma´n geometric constraint for flexible bodies in planar motion are derived. These equations capture the centrifugal stiffening effects arising in fast rotating structures. For the second case, analytical and numerical evidence of out-of-plane vibrations of an in-plane rotating three-dimensional Timoshenko beam with cross sectional area of arbitrary shape is reported.
Skip Nav Destination
Article navigation
October 1991
Research Papers
A Unified Approach for the Dynamics of Beams Undergoing Arbitrary Spatial Motion
Z.-E. Boutaghou,
Z.-E. Boutaghou
Productivity Center, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Search for other works by this author on:
A. G. Erdman
A. G. Erdman
Productivity Center, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
Search for other works by this author on:
Z.-E. Boutaghou
Productivity Center, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
A. G. Erdman
Productivity Center, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455
J. Vib. Acoust. Oct 1991, 113(4): 494-502 (9 pages)
Published Online: October 1, 1991
Article history
Received:
October 1, 1989
Online:
June 17, 2008
Citation
Boutaghou, Z., and Erdman, A. G. (October 1, 1991). "A Unified Approach for the Dynamics of Beams Undergoing Arbitrary Spatial Motion." ASME. J. Vib. Acoust. October 1991; 113(4): 494–502. https://doi.org/10.1115/1.2930213
Download citation file:
Get Email Alerts
Related Articles
Free Response of Twisted Plates with Fixed Support Separation
J. Vib. Acoust (April,2001)
Dynamics of Flexible Manipulator Arms: Alternative Derivation, Verification, and Characteristics for Control
J. Dyn. Sys., Meas., Control (September,1993)
On the Dynamics of Elastic Multibody Systems
Appl. Mech. Rev (September,1999)
Three-Dimensional Solid Brick Element Using Slopes in the Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (April,2014)
Related Proceedings Papers
Related Chapters
Simulation and Analysis for Motion Space of Spatial Series Mechanism
International Conference on Information Technology and Management Engineering (ITME 2011)
Dynamics of Rigid Bodies: Analytical Approach
Dynamics of Particles and Rigid Bodies: A Self-Learning Approach
Understanding the Problem
Design and Application of the Worm Gear