The present paper analyzes the dynamic behavior of a simply supported beam subjected to an axial transport of mass. The Galerkin method is used to discretize the problem: a high dimensional system of ordinary differential equations with linear gyroscopic part and cubic nonlinearities is obtained. The system is studied in the sub and super-critical speed ranges with emphasis on the stability and the global dynamics that exhibits special features after the first bifurcation. A sample case of a physical beam is developed and numerical results are presented concerning the convergence of the series expansion, linear subcritical behavior, bifurcation analysis and stability, and direct simulation of global postcritical dynamics. A homoclinic orbit is found in a high dimensional phase space and its stability and collapse are studied. [S0739-3717(00)00501-8]

1.
Ashley
,
H.
, and
Haviland
,
G.
,
1950
, “
Bending Vibrations of a Pipe Line Containing Flowing Fluid
,”
ASME J. Appl. Mech.
,
17
, pp.
229
232
.
2.
Swope
,
R. D.
, and
Ames
,
W. F.
,
1963
, “
Vibrations of a Moving Threadline
,”
J. Franklin Inst.
,
275
, pp.
36
55
.
3.
Mote
,
C. D.
, Jr.
,
1966
, “
On the Non-Linear Oscillation of an Axially Moving String
,”
ASME J. Appl. Mech.
,
33
, pp.
463
464
.
4.
Naguleswaran
,
S.
, and
Williams
,
J. H.
,
1968
, “
Lateral Vibration of Band-Saw Blades, Pulley Belts and the Like
,”
Int. J. Mech. Sci.
,
10
, pp.
239
250
.
5.
Thurman
,
A. L.
, and
Mote
,
C. D.
, Jr.
,
1969
, “
Free Periodic Nonlinear Oscillation of an Axially Moving Strip
,”
J. Appl. Mech.
,
36
, pp.
83
91
.
6.
Shih
,
L. Y.
,
1971
, “
Three-Dimensional Non-Linear Vibration of a Traveling String
,”
Int. J. Non-Linear Mech.
,
6
, pp.
427
434
.
7.
Ames
,
W. F.
,
Lee
,
S. Y.
, and
Zaiser
,
J. N.
,
1968
, “
Non-Linear Vibration of a Travelling Threadline
,”
Int. J. Non-Linear Mech.
,
3
, pp.
449
469
.
8.
Simpson
,
A.
,
1973
, “
Transverse Modes and Frequencies of Beams Translating Between Fixed end Supports
,”
J. Mech. Eng. Sci.
,
15
, pp.
159
164
.
9.
Holmes
,
P. J.
,
1978
, “
Pipes Supported at Both Ends Cannot Flutter
,”
ASME J. Appl. Mech.
,
45
, pp.
619
622
.
10.
Paidoussis
,
M. P.
, and
Moon
,
F. C.
,
1988
, “
Nonlinear and Chaotic Fluidelastic Vibrations of a Flexible Pipe Conveying Fluid
,”
J. Fluids Struct.
,
2
, pp.
567
591
.
11.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
12.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
, No.
10
, pp.
1337
1342
.
13.
Meirovitch
,
L.
,
1975
, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME J. Appl. Mech.
,
42
, pp.
446
450
.
14.
D’Eleuterio
,
G. M. T.
, and
Huges
,
P. C.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
ASME J. Appl. Mech.
,
51
, pp.
415
422
.
15.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1991
, “
Traveling Load Response of an Axially Moving String
,”
J. Sound Vib.
,
149
, No.
2
, pp.
267
284
.
16.
Wickert
,
J. A.
,
1992
, “
Non-Linear Vibration of a Travelling Tensioned Beam
,”
Int. J. Non-Linear Mech.
,
27
, pp.
503
517
.
17.
Hwang
,
S.-J.
, and
Perkins
,
N. C.
,
1992
, “
Supercritical Stability of an Axially Moving Beam Part I: Model and Equilibrium Analysis
,”
J. Sound Vib.
,
154
, No.
3
, pp.
381
396
.
18.
Hwang
,
S.-J.
, and
Perkins
,
N. C.
,
1992
, “
Supercritical Stability of an Axially Moving Beam Part II: Vibration and Stability Analyses
,”
J. Sound Vib.
,
154
, No.
3
, pp.
397
409
.
19.
Al-jawi
,
A. A. N.
,
Pierre
,
C.
, and
Ulsoy
,
A. G.
,
1995
, “
Vibration Localization in Dual-Span Axially Moving Beams, Part I: Formulation and Results
,”
J. Sound Vib.
,
179
, No.
2
, pp.
243
266
.
20.
Al-jawi
,
A. A. N.
,
Pierre
,
C.
, and
Ulsoy
,
A. G.
,
1995
, “
Vibration Localization in Dual-Span Axially Moving Beams, Part II: Perturbation Analysis
,”
J. Sound Vib.
,
179
, No.
2
, pp.
267
287
.
21.
Al-jawi
,
A. A. N.
,
Ulsoy
,
A. G.
, and
Pierre
,
C.
,
1995
, “
Vibration Localization in Band-Wheel Systems: Theory and Experiment
,”
J. Sound Vib.
,
179
, No.
2
, pp.
289
312
.
22.
Wickert
,
J. A.
,
1993
, “
Free Linear Vibration of Self-Pressurized Foil Bearings
,”
ASME J. Vibr. Acoust.
,
115
, pp.
145
151
.
23.
Lakshmikumaran
,
A. V.
, and
Wickert
,
J. A.
,
1996
, “
On the Vibration of Coupled Travelling String and Air Bearing System
,”
ASME J. Vibr. Acoust.
,
118
, pp.
398
405
.
24.
Perkins
,
N. C.
, and
Mote
,
C. D.
, Jr.
,
1987
, “
Three-Dimensional Vibration of Travelling Elastic Cables
,”
J. Sound Vib.
,
114
, No.
2
, pp.
325
340
.
25.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive System
,”
ASME J. Appl. Mech.
,
118
, pp.
406
413
.
26.
Moon
,
J.
, and
Wickert
,
J. A.
,
1997
, “
Non-Linear Vibration of Power Transmission Belts
,”
J. Sound Vib.
,
200
, No.
4
, pp.
419
431
.
27.
Lin
,
C. C.
,
1997
, “
Stability and Vibration Characteristics of Axially Moving Plates
,”
Int. J. Solids Struct.
,
34
, No.
24
, pp.
3179
3190
.
28.
Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer Verlag, New York.
29.
Carrier
,
G. F.
,
1945
, “
On the Non-Linear Vibration Problem of the Elastic String
,”
Q. Appl. Math.
,
3
, pp.
157
165
.
30.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1984
, “
Planar Nonlinear Free Vibrations of an Elastic Cable
,”
Int. J. Non-Linear Mech.
,
19
, pp.
39
45
.
31.
Szemplinska-Stupnicka
,
W.
,
1983
, “
Non-Linear Normal Modes and the Generalized Ritz Method in the Problems of Vibrations of Non-Linear Elastic Continuous Systems
,”
Int. J. Non-Linear Mech.
,
18
, No.
2
, pp.
149
165
.
32.
Semler
,
C.
, and
Paı¨doussis
,
M. P.
,
1996
, “
Nonlinear Analysis of the Parametric Resonances of a Planar Fluid-Conveying Cantilevered Pipe
,”
J. Fluids Struct.
,
10
, pp.
787
825
.
33.
Pakdemirli
,
M.
,
Nayfeh
,
S. A.
, and
Nayfeh
,
A. H.
,
1995
, “
Analysis of One-to-One Autoparametric Resonances in Cables-Discretization vs. Direct Treatment
,”
Nonlinear Dyn.
,
8
, pp.
65
83
.
34.
Pellicano
,
F.
, and
Zirilli
,
F.
,
1998
, “
Boundary Layers and Nonlinear Vibrations of an Axially Moving Beam
,”
Int. J. Non-Linear Mech.
,
33
, No.
4
, pp.
691
711
.
You do not currently have access to this content.