The linear dynamics of a class of translating media with an arbitrarily varying length is investigated. The tension in the media arising from their longitudinal accelerations is incorporated. The dynamic stability of the continuous media relative to the inertial and moving coordinate systems is studied from the energy standpoint. The exact expressions for the rates of change of energies of media are derived and interpreted from both control volume and system viewpoints. The stability analyses relative to the inertial and moving coordinate systems result in the same predictions. Examples including a robotic arm through a prismatic joint and an elevator cable in a high-rise building illustrate the analysis. In particular, the results explain an inherent “unstable shortening cable behavior” encountered in elevator industry. [S0739-3717(00)00503-1]

1.
Terumichi
,
Y.
,
Ohtsuka
,
M.
,
Yoshizawa
,
M.
,
Fukawa
,
Y.
, and
Tsujioka
,
Y.
,
1997
, “
Nonstationary Vibrations of a String with Time-Varying Length and a Mass-Spring System Attached at the Lower End
,”
Nonlinear Dynam.
,
12
, No.
1
, pp.
39
55
.
2.
Misra
,
A. K.
, and
Modi
,
V. J.
,
1985
, “
Deployment and Retrieval of Shuttle Supported Tethered Satellites
,”
AIAA J. Guid.
,
5
, No.
3
, pp.
278
285
.
3.
Yuh
,
J.
, and
Young
,
T.
,
1991
, “
Dynamic Modeling of an Axially Moving Beam in Rotation: Simulation and Experiment
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
34
40
.
4.
Tsuchiya
,
K.
,
1983
, “
Dynamics of a Spacecraft During Extension of Flexible Appendages
,”
AIAA J. Guid.
,
6
, No.
2
, pp.
100
103
.
5.
Stolte
,
J.
, and
Benson
,
R. C.
,
1992
, “
Dynamic Deflection of Paper Emerging from a Channel
,”
ASME J. Vibr. Acoust.
,
114
, No.
2
, pp.
187
193
.
6.
Kumaniecka
,
K.
, and
Niziok
,
J.
,
1994
, “
Dynamic Stability of a Rope with Slow Variability of the Parameters
,”
J. Sound Vib.
,
178
, No.
2
, pp.
211
226
.
7.
Roberts, R., 1998, “Control of High-Rise/High-Speed Elevators,” Proceedings of the American Control Conference, FM16-1, Philadelphia.
8.
Venkatesh, S. R., and Cho, Y. M., 1998, “Identification and Control of High Rise Elevators,” Proceedings of the American Control Conference, FM16-3, Philadelphia.
9.
Carrier
,
G. F.
,
1949
, “
The Spaghetti Problem
,”
Am. Math. Monthly
,
56
, pp.
669
672
.
10.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
,
1974
, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
,
297
, pp.
201
220
.
11.
Zajaczkowski
,
J.
, and
Lipinski
,
J.
,
1979
, “
Instability of the Motion of a Beam of Periodically Varying Length
,”
J. Sound Vib.
,
63
, No.
1
, pp.
9
18
.
12.
Yamamoto
,
T.
,
Yasuda
,
K.
, and
Koto
,
M.
,
1978
, “
Vibration of a String with Time-Variable Length
,”
Bull. J. Soc. Mech. Eng.
,
21
, No.
162
, pp.
1677
1684
.
13.
Mansfield
,
L.
, and
Simmonds
,
J. G.
,
1987
, “
The Reverse Spaghetti Problem: Drooping Motion of an Elastica Issuing from a Horizontal Guide
,”
ASME J. Appl. Mech.
,
54
, pp.
147
150
.
14.
Tadikonda
,
S. K.
, and
Baruh
,
H.
,
1992
, “
Dynamics and Control of a Translating Flexible Beam with a Prismatic Joint
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
422
427
.
15.
Stolte
,
J.
, and
Benson
,
R. C.
,
1993
, “
An Extending Dynamic Elastica—Impact with a Surface
,”
ASME J. Vibr. Acoust.
,
115
, No.
3
, pp.
308
313
.
16.
Vu-Quoc
,
L.
, and
Li
,
S.
,
1995
, “
Dynamics of Sliding Geometrically-Exact Beams: Large Angle Maneuver and Parametric Resonance
,”
Comput. Methods Appl. Mech. Eng.
,
120
, pp.
65
118
.
17.
Cooper
,
J.
,
1993
, “
Asymptotic Behavior for the Vibrating String with a Moving Boundary
,”
J. Math. Anal. Appl.
,
174
, pp.
67
87
.
18.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1989
, “
On the Energetics of Axially Moving Continua
,”
J. Acoust. Soc. Am.
,
85
, pp.
1365
1368
.
19.
Wang
,
P. K. C.
, and
Wei
,
J. D.
,
1994
, “
Correction and Remarks on Vibration in a Moving Flexible Robot Arm
,”
J. Sound Vib.
,
172
, No.
3
, pp.
413
414
.
20.
Miranker
,
W. L.
,
1960
, “
The Wave Motion in a Medium in Motion
,”
IBM J. Res. Dev.
,
4
, pp.
36
42
.
21.
White, F. M., 1994, Fluid Mechanics, McGraw-Hill, pp. 114–122.
22.
Meirovitch, L., 1970, Methods of Analytical Dynamics, McGraw-Hill, pp. 14–17.
23.
Wang
,
P. K. C.
, and
Wei
,
J. D.
,
1987
, “
Vibrations in a Moving Flexible Robot Arm
,”
J. Sound Vib.
,
116
, pp.
149
160
.
You do not currently have access to this content.