Adaptive structures involving large imposed deformation often go beyond the boundary of linear theory and they should be treated as “nonlinear” structures. A generic nonlinear finite element formulation for vibration sensing and control analysis of laminated electro/elastic nonlinear shell structures is derived based on the virtual work principle. A generic curved triangular piezoelectric shell element is proposed based on the layerwise constant shear angle theory. The dynamic system equations, equations of electric potential output and feedback control force defined in a matrix form are derived. The modified Newton-Raphson method is adopted for nonlinear dynamic analysis of large and complex piezoelectric/elastic/control structures. A finite element code for vibration sensing and control analysis of nonlinear active piezoelectric structronic systems is developed. The developed piezoelectric shell element and finite element code are validated and then applied to control analysis of flexible electro-elastic (piezoelectric/elastic) structural systems. Vibration control of constant-curvature electro/elastic beam and plate systems are studied. Time-history responses of free and controlled nonlinear electro/elastic beam and plate systems are presented and nonlinear effects discussed.

1.
Tzou, H. S., and Fukuda, T. (Editors), 1992, Precision Sensors, Actuators, and Systems, Kluwer Academic Publishers, Dordrecht/Boston/London.
2.
Gabbert, U., and Tzou, H. S. (Editors), 2001, Smart Structures and Structronic Systems, Kluwer Academic Publishers, Dordrecht/Boston/London.
3.
Tzou, H. S., 1993, Piezoelectric Shells: Distributed Sensing and Control of Continua, Kluwer Academic Publishers, Boston/Dordrecht.
4.
Tzou
,
H. S.
, and
Bao
,
Y.
,
1997
, “
Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part-1: Nonlinear Anisotropic Piezothermoelastic Shell Laminates
,”
ASME J. Vibr. Acoust.
,
119
, pp.
374
381
.
5.
Howard
,
R. V.
,
Chai
,
W. K.
, and
Tzou
,
H. S.
,
2001
, “
Modal Voltages of Linear and Nonlinear Structures Using Distributed Artificial Neurons (A Theoretical and Experimental Study)
,”
Mech. Syst. Signal Process.
,
15
(
3
), pp.
629
640
.
6.
Tzou
,
H. S.
, and
Zhou
,
Y.
,
1997
, “
Nonlinear Piezothermoelasticity and Multi-Field Actuations, Part-2: Control of Nonlinear Buckling and Dynamics
,”
ASME J. Vibr. Acoust.
,
119
, pp.
382
389
.
7.
Zhou
,
Y. H.
, and
Tzou
,
H. S.
,
2000
, “
Control of Nonlinear Piezoelectric Circular Shallow Spherical Shells
,”
Journal of Solids and Structures
,
37
, pp.
1663
1677
.
8.
Tzou
,
H. S.
, and
Wang
,
D. W.
,
2002
, “
Micro-sensing Characteristics and Modal Voltages of Linear/nonlinear Toroidal Shell
,”
J. Sound Vib.
,
254
(
2
), pp.
203
218
.
9.
Trindade
,
M. A.
,
Benjeddou
,
A.
, and
Ohayon
,
R.
,
2001
, “
Finite Element Modelling of Hybrid Active-passive Vibration Damping of Multilayer Piezoelectric Sandwich Beams-Part II: System Analysis
,”
Int. J. Numer. Methods Eng.
,
51
(
7
), pp.
855
864
.
10.
Sze
,
K. Y.
, and
Pan
,
Y. S.
,
1999
, “
Hybrid Finite Element Models for Piezoelectric Materials
,”
J. Sound Vib.
,
226
, pp.
519
547
.
11.
Tzou
,
H. S.
, and
Tseng
,
C. I.
,
1990
, “
Distributed Piezoelectric Sensor/Actuator Design for Dynamic Measurement/Control of Distributed Parameter Systems: A Piezoelectric Finite Element Approach
,”
J. Sound Vib.
,
138
(
1
), pp.
17
34
.
12.
Tzou
,
H. S.
, and
Ye
,
R.
,
1994
, “
Piezothermoelasticity and Precision Control of Active Piezoelectric Laminates
,”
ASME J. Vibr. Acoust.
,
114
, pp.
489
495
.
13.
Tzou
,
H. S.
, and
Ye
,
R.
,
1996
, “
Analysis of Piezoelastic Structures with Laminated Piezoelectric Triangle Shell Elements
,”
AIAA J.
,
34
, pp.
110
115
.
14.
Ye
,
R.
, and
Tzou
,
H. S.
,
2000
, “
Control of Adaptive Shells with Thermal and Mechanical Excitations
,”
J. Sound Vib.
,
231
(
5
), pp.
1321
1338
.
15.
Tzou
,
H. S.
,
Wang
,
D. W.
, and
Chai
,
W. K.
,
2002
, “
Dynamics and Distributed Control of Conical Shells Laminated with Full and Diagonal Actuators
,”
J. Sound Vib.
,
256
(
1
), pp.
65
79
.
16.
Liu
,
M. L.
, and
To
,
C. W. S.
,
1995
, “
Hybrid Strain Based Three Node Flat Triangular Shell Element-I. Nonlinear Theory and Incremental Formulation
,”
Comput. Struct.
,
54
(
6
), pp.
1031
1056
.
17.
Bathe, K. J., 1996, Finite Element Procedures, Prentice Hall, New Jersey, Chap. 6.
18.
Ikeda, T., 1990, Fundamentals of Piezoelectricity, Oxford University Press, New York.
19.
Craig, R. R. Jr., 1981, Structural Dynamics: An Introduction to Computer Methods, John Wiley & Sons, New York, NY.
20.
Cook, R. B., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley & Sons, New York.
21.
Sze
,
K. Y.
, and
Yao
,
L. Q.
,
2000
, “
A Hybrid Stress ANS Solid-shell Element and Its Generalization for Smart Structure Modelling. Part I-Solid-shell Element Formulation
,”
Int. J. Numer. Methods Eng.
,
48
, pp.
545
564
.
22.
Stolarski
,
H.
, and
Belytschko
,
T.
,
1983
, “
Shear and Membrane Locking in Curved C0 Elements
,”
Comput. Methods Appl. Mech. Eng.
,
41
, pp.
279
296
.
23.
Simo
,
J. C.
, and
Rifai
,
S.
,
1990
, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes
,”
Int. J. Numer. Methods Eng.
,
29
, pp.
1595
1638
.
24.
Bischoff
,
M.
, and
Ramm
,
E.
,
1997
, “
Shear Deformable Shell Elements For Large Strains And Rotations
,”
Int. J. Numer. Methods Eng.
,
40
, pp.
4427
4449
.
25.
Hauptmann
,
R.
, and
Schweizerhof
,
K.
,
1998
, “
A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Nonlinear Analysis Employing Only Displacement Degree of Freedom
,”
Int. J. Numer. Methods Eng.
,
42
, pp.
49
69
.
26.
Harnau
,
M.
, and
Schweizerhof
,
K.
,
2002
, “
About Linear and Quadratic ‘Solid-Shell’ Elements at Large Deformations
,”
Comput. Struct.
,
80
, pp.
805
817
.
27.
Surana, K. S., 1983, FINESSE (Finite Element System for Nonlinear Analysis) Theoretical Manual, McDonell Douglas Automation Company, St. Louis.
28.
Blandford
,
G. E.
, and
Glass
,
G.
,
1987
, “
Static/Dynamic Analysis of Locally Buckled Frames
,”
Journal of Structural Engineering
,
113
, pp.
363
381
.
29.
Bathe
,
K. J.
,
Ramm
,
E.
, and
Wilson
,
E. L.
,
1975
, “
Finite Element Formulations for Large Deformation Dynamic Analysis
,”
Int. J. Numer. Methods Eng.
,
9
, pp.
353
386
.
30.
Bathe, K. J., Wilson, E. L., and Iding, R. H., 1974, “NONSAP, A Structural Analysis Program for Static and Dynamic Response of Nonlinear System,” Report No. SESM 74-3, Structural Engineering Laboratory, University of California, Berkeley, CA.
31.
To
,
C. W. S.
, and
Liu
,
M. L.
,
1995
, “
Hybrid Strain Based Three Node Flat Triangular Shell Element-II. Numerical Investigation of Nonlinear Problems
,”
Comput. Struct.
,
54
(
6
), pp.
1057
1076
.
You do not currently have access to this content.