The natural frequency and responses of a micro-electro-mechanical system (MEMS) with time-varying capacitors are determined under an equivalent direct current (DC) voltage. Under alternating current (AC) voltages, the resonant condition and the corresponding resonant motion possessing a wide energy band for such a system are investigated because the motion with the wide energy band is very easily sensed. For a given voltage strength, the AC frequency band is obtained for chaotic resonant motions in the specific resonant layer. The numerical and analytical predictions of such a motion are in a acceptable agreement, and the dynamic model provides the range prediction of the alternating current and voltage on the capacitor agreeing with experimental measurements. The lower-order resonant motion has a higher energy than the higher-order resonant motions, which indicates that the lower-order resonant motion can be easily sensed. Although this model is developed from a specified MEMS, the analysis and results can be applied to other dynamic systems.

1.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
, Jr.,
J.
,
1967
, “
The Resonant Gate Transistor
,”
Transactions on Electrons Devices
,
ED-14
(
3
), pp.
117
133
.
2.
Lin
,
L.
,
Howe
,
R. T.
, and
Pisano
,
A. P.
,
1998
, “
Microelectromechanical Filters for Signal Process
,”
J. Microelectromech. Syst.
,
7
(
3
), pp.
286
294
.
3.
Syms
,
R. R. A.
,
1998
, “
Electrothermal Frequency Turning of Folded and Coupled Vibrating Micromechanical Resonators
,”
J. Microelectromech. Syst.
,
7
(
2
), pp.
164
171
.
4.
Prak
,
A.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
,
1992
, “
Selective Mode Excitation and Detection of Micromachined Resonators
,”
J. Microelectromech. Syst.
,
1
(
4
), pp.
179
186
.
5.
Serry
,
F. M.
,
Walliser
,
D.
, and
Macklay
,
G. J.
,
1995
, “
The Anharmonic Casimir Oscillator (ACO)-The Casimir Effect in a Model Microelectromechanical System
,”
J. Microelectromech. Syst.
,
4
(
4
), pp.
193
205
.
6.
Hung
,
E. S.
, and
Senturia
,
S. D.
,
1999
, “
Extending the Travel Range of the Analog-Turned Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
8
(
4
), pp.
497
505
.
7.
Raskin
,
J. P.
,
Brown
,
A. R.
,
Khuri-Yakub
,
B. T.
, and
Rebeiz
,
G. M.
,
2000
, “
A Novel Parametric Effect MEMS Amplifier
,”
J. Microelectromech. Syst.
,
9
(
4
), pp.
528
537
.
8.
Yeh
,
J.-L. A.
,
Hui
,
C.-Y.
, and
Tien
,
N. C.
,
2000
, “
Electrostatic Model for an Asymmetric Combdrive
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
126
135
.
9.
Lichtenberg, A. J., and Lieberman, M. A., 1992, Regular and Chaotic Dynamics, 2nd ed., Springer-Verlag, New York.
10.
Luo
,
A. C. J.
,
2002
, “
Resonant Layers in Parametrically Excited Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
12
(
2
), pp.
409
419
.
11.
Luo
,
A. C. J.
,
2001
, “
Resonant-overlap Phenomena in Stochastic Layers of Nonlinear Hamiltonian Systems With Periodical Excitations
,”
J. Sound Vib.
,
240
(
5
), pp.
821
836
.
12.
Chirikov
,
B. V.
,
1979
, “
A Universal Instability of Many-Dimensional Oscillator System
,”
Phys. Rep.
,
52
, pp.
263
379
.
13.
Melnikov
,
V. K.
,
1962
, “
On the Behavior of Trajectories of System Near to Autonomous Hamiltonian Systems
,”
Sov. Math. Dokl.
,
3
, pp.
109
112
.
14.
Melnikov
,
V. K.
,
1963
, “
On the Stability of the Center for Time Periodic Perturbations
,”
Transaction Moscow Mathematics Society
,
12
, pp.
1
57
.
15.
Han
,
R. P. S.
, and
Luo
,
A. C. J.
,
1998
, “
Resonant Layers in Nonlinear Dynamics
,”
ASME J. Appl. Mech.
,
65
, pp.
727
736
.
16.
Feng
,
K.
, and
Qin
,
M. Z.
,
1991
, “
Hamiltonian Algorithms for Hamiltonian Systems and a Comparative Numerical Study
,”
Comput. Phys. Commun.
,
65
, pp.
173
187
.
17.
McLachlan
,
R.
, and
Atela
,
P.
,
1992
, “
The Accuracy of Symplectic Integrators
,”
Nonlinearity
,
5
, pp.
541
562
.
You do not currently have access to this content.