A new method for analyzing nonlinear steady-state dynamic response of three-dimensional sagged stay cables subject to arbitrary periodic excitation is proposed in this paper. Firstly, the nonlinear governing equation of motion of a stay cable with arbitrary sag is formulated in terms of three-node curved finite elements. Then a frequency-domain solution method to obtain the periodically forced response is developed by applying the incremental harmonic balance (IHB) technique to the finite element model. The proposed method is an accurate algorithm in the sense that it accommodates multi-harmonic components and no mode-based model reduction is made in the solution process. Both frequency- and amplitude-controlled algorithms are formulated and are alternatively implemented to obtain complete frequency-response curves including unstable solutions. The proposed method enables direct solution to the sub- and super-harmonic resonances, and gives a way to analyze nonlinear periodic oscillation under parametric excitation and internal resonance. Case study of applying the proposed method to nonlinear dynamic behavior analysis of the Tsing Ma suspension bridge cables is demonstrated. The analysis results show that the side-span free cables of the bridge display distinctly different nonlinear characteristics in the construction stage and in the final stage.

1.
Poston
,
R. W.
,
1998
, “
Cable-Stay Conundrum
,”
Civ. Eng. Mag.
,
68
(
8
), pp.
58
61
.
2.
Ni, Y. Q., Duan, Y. F., Chen, Z. Q., and Ko, J. M., 2002, “Damping Identification of MR-Damped Bridge Cables from In-Situ Monitoring under Wind-Rain-Excited Conditions,” Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways, Vol. 4696, S.-C. Liu and D. J. Pines, eds., SPIE, Bellingham, WA, pp. 41–51.
3.
Yamaguchi, H., and Fujino, Y., 1998, “Stayed Cable Dynamics and Its Vibration Control,” Bridge Aerodynamics, A Larsen and S. Esdahl, eds., A. A. Balkema, Rotterdam, pp. 235–253.
4.
Pinto da Costa
,
A.
,
Martins
,
J. A. C.
,
Branco
,
F.
, and
Lilien
,
J. L.
,
1996
, “
Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and/or Towers
,”
J. Eng. Mech.
,
122
, pp.
613
621
.
5.
Baker, J. R., and Smith, S. W., 2002, “Simulations of Parametric Response of Bridge Stay Cables,” Proceedings of the 20th International Modal Analysis Conference, Vol. 2, SEM, Bethel, CT, pp. 650–656.
6.
Hagedorn
,
P.
, and
Schafer
,
B.
,
1980
, “
On Non-Linear Free Vibrations of an Elastic Cable
,”
International Journal of Non-Linear Mechanics
,
15
, pp.
333
340
.
7.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1982
, “
Monofrequent Oscillations of a Non-Linear Model of a Suspended Cable
,”
J. Sound Vib.
,
82
, pp.
247
259
.
8.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1984
, “
Planar Non-Linear Free Vibrations of an Elastic Cable
,”
Int. J. Non-Linear Mech.
,
19
, pp.
39
52
.
9.
Al-Noury
,
S. I.
, and
Ali
,
S. A.
,
1985
, “
Large-Amplitude Vibrations of Parabolic Cables
,”
J. Sound Vib.
,
101
, pp.
451
462
.
10.
Takahashi
,
K.
, and
Konishi
,
Y.
,
1987
, “
Non-Linear Vibrations of Cables in Three Dimensions
,”
J. Sound Vib.
,
118
, pp.
69
97
.
11.
Benedettini
,
F.
, and
Rega
,
G.
,
1987
, “
Non-Linear Dynamics of an Elastic Cable under Planar Excitation
,”
Int. J. Non-Linear Mech.
,
22
, pp.
497
509
.
12.
Tadjbakhsh
,
I. G.
, and
Wang
,
Y.-M.
,
1990
, “
Wind-Driven Nonlinear Oscillations of Cables
,”
Nonlinear Dyn.
,
1
, pp.
265
291
.
13.
Rao
,
G. V.
, and
Iyengar
,
R. N.
,
1991
, “
Internal Resonance and Non-Linear Response of a Cable under Periodic Excitation
,”
J. Sound Vib.
,
149
, pp.
25
41
.
14.
Perkins
,
N. C.
,
1992
, “
Modal Interactions in the Non-Linear Response of Elastic Cables under Parametric/External Excitation
,”
Int. J. Non-Linear Mech.
,
27
, pp.
233
250
.
15.
Lee
,
C.
, and
Perkins
,
N. C.
,
1995
, “
Three-Dimensional Oscillations of Suspended Cables Involving Simultaneous Internal Resonances
,”
Nonlinear Dyn.
,
8
, pp.
45
63
.
16.
Benedettini
,
F.
,
Rega
,
G.
, and
Alaggio
,
R.
,
1995
, “
Non-Linear Oscillations of a Four-Degree-of-Freedom Model of a Suspended Cable under Multiple Internal Resonance Conditions
,”
J. Sound Vib.
,
182
, pp.
775
798
.
17.
Xiao
,
X.
, and
Druez
,
J.
,
1996
, “
Planar Nonlinear Forced Vibrations of a Suspended Cable
,”
Trans. Can. Soc. Mech. Eng.
,
20
, pp.
123
137
.
18.
Luongo
,
A.
, and
Piccardo
,
G.
,
1998
, “
Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance
,”
J. Sound Vib.
,
214
, pp.
915
940
.
19.
Pakdemirli
,
M.
,
Nayfeh
,
S. A.
, and
Nayfeh
,
A. H.
,
1995
, “
Analysis of One-to-One Autoparametric Resonances in Cables-Discretization vs. Direct Treatment
,”
Nonlinear Dyn.
,
8
, pp.
65
83
.
20.
Rega
,
G.
,
Lacarbonara
,
W.
,
Nayfeh
,
A. H.
, and
Chin
,
C. M.
,
1999
, “
Multiple Resonances in Suspended Cables: Direct versus Reduced-Order Models
,”
Int. J. Non-Linear Mech.
,
34
, pp.
901
924
.
21.
Ozdemir
,
H.
,
1979
, “
A Finite Element Approach for Cable Problems
,”
Int. J. Solids Struct.
,
15
, pp.
427
437
.
22.
Jayaraman
,
H. B.
, and
Knudson
,
W. C.
,
1981
, “
A Curved Element for the Analysis of Cable Structures
,”
Comput. Struct.
,
14
, pp.
325
333
.
23.
Wu
,
J.-S.
, and
Chen
,
C.-C.
,
1989
, “
The Dynamic Analysis of a Suspended Cable Due to a Moving Load
,”
Int. J. Numer. Methods Eng.
,
28
, pp.
2361
2381
.
24.
Tuah
,
H.
, and
Leonard
,
J. W.
,
1992
, “
Strumming of Nonlinear Cable Elements Using Modal Superposition
,”
Eng. Struct.
,
14
, pp.
282
290
.
25.
Wang
,
P.-H.
,
Fung
,
R.-F.
, and
Lee
,
M.-J.
,
1998
, “
Finite Element Analysis of a Three-Dimensional Underwater Cable with Time-Dependent Length
,”
J. Sound Vib.
,
209
, pp.
223
249
.
26.
Ni, Y. Q., Ko, J. M., and Zheng, G., 1999, “Free and Forced Vibration of Large-Diameter Sagged Cables Taking into Account Bending Stiffness,” Advances in Steel Structures, Vol. 1, S. L. Chan and J. G. Teng, eds., Elsevier, Oxford, pp. 513–520.
27.
Zheng, G., 2002, “Vibration-Based Condition Assessments of Cables in Cable-Supported Bridges,” PhD Thesis, Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong.
28.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
, pp.
959
964
.
29.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method with Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
, pp.
871
876
.
30.
Wong
,
C. W.
,
Ni
,
Y. Q.
, and
Lau
,
S. L.
,
1994
, “
Steady-State Oscillation of Hysteretic Differential Model, I: Response Analysis
,”
J. Eng. Mech.
,
120
, pp.
2271
2298
.
31.
Ko, J. M., Ni, Y. Q., and Wang, J. Y., 2000, “Tsing Ma Suspension Bridge: Ambient Vibration Survey Campaigns,” Proceedings of the International Conference on Advanced Problems in Vibration Theory and Applications, Science Press, Beijing, China, pp. 285–291.
32.
Ko, J. M., Zheng, G., Chen, Z. Q., and Ni, Y. Q., 2002, “Field Vibration Tests of Bridge Stay Cables Incorporated with Magneto-Rheological (MR) Dampers,” Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways, Vol. 4696, S.-C. Liu and D. J. Pines, eds., SPIE, Bellingham, WA, pp. 30–40.
33.
Zheng
,
G.
,
Ko
,
J. M.
, and
Ni
,
Y. Q.
,
2002
, “
Super-Harmonic and Internal Resonances of a Suspended Cable with Nearly Commensurable Natural Frequencies
,”
Nonlinear Dyn.
,
30
, pp.
55
70
.
You do not currently have access to this content.