Abstract

In this paper, the dynamics mechanism of stick and nonstick motion for a dry-friction oscillator is discussed. From the theory of Luo in 2005 [Commun. Nonlinear Sci. Numer. Simul., 10, pp. 1–55], the conditions for stick and nonstick motions are achieved. The stick and nonstick periodic motions are predicted analytically through the appropriate mapping structures. The local stability and bifurcation conditions for such periodic motions are obtained. The stick motions are illustrated through the displacement, velocity, and force responses. This investigation provides a better understanding of stick and nonstick motions of the linear oscillator with dry friction. The methodology presented in this paper is applicable to oscillators with nonlinear friction forces.

1.
Den Hartog
,
J. P.
, 1931, “
Forced Vibrations With Coulomb and Viscous Damping
,”
Trans. ASME
0097-6822,
53
, pp.
107
115
.
2.
Levitan
,
E. S.
, 1960, “
Forced Oscillation of a Spring-Mass System Having Combined Coulomb and Viscous Damping
,”
J. Acoust. Soc. Am.
0001-4966,
32
, pp.
1265
1269
.
3.
Filippov
,
A. F.
, 1964, “
Differential Equations With Discontinuous Right-Hand Side
,”
Am. Math. Soc. Transl.
0065-9290,
42
, pp.
199
231
.
4.
Filippov
,
A. F.
,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer Academic Publishers
, Dordrecht, 1988.
5.
Hundal
,
M. S.
, 1979, “
Response of a Base Excited System With Coulomb and Viscous Friction
,”
J. Sound Vib.
0022-460X,
64
, pp.
371
378
.
6.
Shaw
,
S. W.
, 1986, “
On the Dynamic Response of a System With Dry-Friction
,”
J. Sound Vib.
0022-460X,
108
, pp.
305
325
.
7.
Feeny
,
B. F.
, and
Moon
,
F. C.
, 1994, “
Chaos in a Forced Dry-Friction Oscillator: Experiments and Numerical Modeling
,”
J. Sound Vib.
0022-460X,
170
, pp.
303
323
.
8.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
, 1997, “
Dynamics of Oscillators With Impact and Friction
,”
Chaos, Solitons Fractals
0960-0779,
8
(
4
), pp.
535
558
.
9.
Hinrichs
,
N.
,
Oestreich
,
M.
, and
Popp
,
K.
, 1998, “
On the Modeling of Friction Oscillators
,”
J. Sound Vib.
0022-460X,
216
(
3
), pp.
435
459
.
10.
Natsiavas
,
S.
, 1998, “
Stability of Piecewise Linear Oscillators With Viscous and Dry Friction Damping
,”
J. Sound Vib.
0022-460X,
217
, pp.
507
522
.
11.
Natsiavas
,
S.
, and
Verros
,
G.
, 1999, “
Dynamics of Oscillators With Strongly Nonlinear Asymmetric Damping
,”
Nonlinear Dyn.
0924-090X,
20
, pp.
221
246
.
12.
Leine
,
R. I.
,
Van Campen
,
D. H.
,
De Kraker
,
A.
, and
Van Den Steen
,
L.
, 1998, “
Stick-Slip Vibrations Induced by Alternate Friction Models
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
41
54
.
13.
Virgin
,
L. N.
and
Begley
,
C. J.
, 1999, “
Grazing Bifurcation and Basins of Attraction in an Impact-Friction Oscillator
,”
Physica D
0167-2789,
130
, pp.
43
57
.
14.
Dankowicz
,
H.
, and
Nordmark
,
A. B.
, 2000, “
On the Origin and Bifurcations of Stick-Slip Oscillations
,”
Physica D
0167-2789,
136
, pp.
280
302
.
15.
Galvanetto
,
U.
, and
Knudsen
,
C.
, 1997, “
Event-Maps in a Stick-Slip System
,”
Nonlinear Dyn.
0924-090X,
13
, pp.
99
115
.
16.
Ko
,
P. L.
,
Taponat
,
M.-C.
, and
Pfaifer
,
R.
, 2001, “
Friction-Induced Vibration-With and Without External Disturbance
,”
Tribol. Int.
0301-679X,
34
, pp.
7
24
.
17.
Andreaus
,
U.
, and
Casini
,
P.
, 2002, “
Friction Oscillator Excited by Moving Base and Colliding With a Rigid or Deformable Obstacle
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
117
133
.
18.
Thomsen
,
J. J.
, and
Fidlin
,
A.
, 2003, “
Analytical Approximations for Stick-Slip Vibration Amplitudes
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
389
403
.
19.
Kim
,
W. J.
, and
Perkins
,
N. C.
, 2003, “
Harmonic Balance/Galerkin Method for Non-Smooth Dynamical System
,”
J. Sound Vib.
0022-460X,
261
, pp.
213
224
.
20.
Luo
,
A. C. J.
Analytical Modeling of Bifurcations, Chaos and Fractals in Nonlinear Dynamics
,” Ph.D. Dissertation, University of Manitoba, Winnipeg, Canada, 1995.
21.
Han
,
R. P. S.
,
Luo
,
A. C. J.
, and
Deng
,
W.
, 1995, “
Chaotic Motion of a Horizontal Impact Pair
,”
J. Sound Vib.
0022-460X,
181
, pp.
231
250
.
22.
Luo
,
A. C. J.
, 2002, “
An Unsymmetrical Motion in a Horizontal Impact Oscillator
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
420
426
.
23.
Menon
,
S.
, and
Luo
,
A. C. J.
, 2003, “
An Analytical Prediction of the Global Period-1 Motion in a Periodically Forced, Piecewise Linear System
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
, pp.
1945
1957
.
24.
Luo
,
A. C. J.
, and
Menon
,
S.
, 2004, “
Global Chaos in a Periodically Forced, Linear System With a Dead-Zone Restoring Force
,”
Chaos, Solitons Fractals
0960-0779,
19
, pp.
1189
1199
.
25.
Luo
,
A. C. J.
, 2004, “
The Mapping Dynamics of Periodic Motions for a Three-Piecewise Linear System Under a Periodic Excitation
,”
J. Sound Vib.
0022-460X,
283
, pp.
724
748
.
26.
Feigin
,
M. I.
, 1970, “
Doubling of the Oscillation Period With C-Bifurcation in Piecewise-Continuous Systems
,”
Phys. Met. Metallogr.
0031-918X,
34
, pp.
861
869
.
27.
Feigin
,
M. I.
, 1995, “
The Increasingly Complex Structure of the Bifurcation Tree of a Piecewise-Smooth System
,”
J. Appl. Math. Mech.
0021-8928,
59
, pp.
853
863
.
28.
di Bernardo
,
M.
,
Feigin
,
M. I.
,
Hogan
,
S. J.
, and
Homer
,
M. E.
, 1999, “
Local Analysis of C-Bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Chaos, Solitons Fractals
0960-0779,
10
, pp.
1881
1908
.
29.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
30.
di Bernaedo
,
M.
,
Budd
,
C. J.
, and
Champney
,
A. R.
, 2001, “
Grazing and Border-Collision in Piecewise-Smooth Systems: A Unified Analytical Framework
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2553
2556
.
31.
di Bernardo
,
M.
,
Budd
,
C. J.
, and
Champneys
,
A. R.
, 2001, “
Normal Form Maps for Grazing Bifurcation in n-Dimensional Piecewise-Smooth Dynamical Systems
,”
Physica D
0167-2789,
160
, pp.
222
254
.
32.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A. B.
, 2002, “
Bifurcation of Dynamical Systems With Sliding: Derivation of Normal Form Mappings
,”
Physica D
0167-2789,
170
, pp.
175
205
.
33.
Leine
,
R. I.
,
van Campen
,
D. H.
, and
van de Vrande
,
B. L.
, 2000, “
Bifurcations in Nonlinear Discontinuous Systems
,”
Nonlinear Dyn.
0924-090X,
23
, pp.
105
164
.
34.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamical Systems on Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
You do not currently have access to this content.