Granular damping is a passive vibration suppression technique which attenuates the response of a vibrating structure by the use of a granule-filled enclosure attached to or embedded in the structure. While promising in many applications especially under harsh conditions, the granular damping mechanism is very complicated and highly nonlinear. In this paper, we perform correlated analytical modeling and numerical studies to evaluate qualitatively and quantitatively the energy dissipation in granular damping. First, an improved analytical model based on the multiphase flow theory is developed for the description of granular motion inside the damper, which accounts for the complete effects of collisions/impacts and dynamic frictions among the granules and between the granules and the enclosure. This model can efficiently characterize the damping effect with high fidelity over a very wide range of parameters, and thus can be used to develop guidelines for parametric studies. With this as a basis, detailed numerical studies using the discrete element method are also carried out to analyze the underlying mechanisms and then provide mechanistic insight for granular damping. In this paper, we focus our attention on the granular damping effect on forced vibrations, which has potential application to a variety of systems.

1.
Panossian
,
H. V.
, 1992, “
Structural Damping Enhancement via Nonobstructive Particle Damping Technique
,”
ASME J. Vibr. Acoust.
0739-3717,
114
, pp.
101
105
.
2.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
, 1998, “
Experiments with Particle damping
,”
Proc. SPIE
0277-786X,
3327
, pp.
2
12
.
3.
Flint
,
E. M.
, 1999, “
Experimental Measurements of the Particle Damping Effectiveness under Centrifugal Loads
,”
Proceedings of the 4th National Turbine Engine High Cycle Fatigue Conference
,
Monterey, CA.
4.
Papalou
,
A.
, and
Masri
,
S. F.
, 1996, “
Performance of Particle Dampers under Random Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
614
621
.
5.
Friend
,
R. D.
, and
Kinra
,
V. K.
, 2000, “
Particle Impact Damping
,”
J. Sound Vib.
0022-460X,
233
(
1
), pp.
93
118
.
6.
Liu
,
W.
,
Tomlinson
,
G. R.
, and
Rongong
,
J. A.
, 2005, “
The Dynamic Characterization of Disk Geometry Particle Dampers
,”
J. Sound Vib.
0022-460X,
280
, pp.
849
861
.
7.
Xu
,
Z. W.
,
Chan
,
K. W.
, and
Liao
,
W. H.
, 2004, “
An Empirical Method for Particle Damping Design
,”
Shock Vib.
1070-9622,
11
, pp.
647
664
.
8.
Cundall
,
P.
, and
Strack
,
O.
, 1979, “
A Distinct Element Model for Granular Assemblies
,”
Geotechnique
0016-8505,
29
,
47
65
.
9.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
Simulation and Characterization of Particle Damping in Transient Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
126
. pp.
202
211
.
10.
Mao
,
K. M.
,
Wang
,
M. Y.
,
Xu
,
Z. W.
, and
Chen
,
T. N.
, 2004, “
DEM Simulation of Particle Damping
,”
Powder Technol.
0032-5910,
142
, pp.
154
165
.
11.
Saeki
,
M.
, 2002, “
Impact Damping with Granular Materials in a Horizontally Vibration System
,”
J. Sound Vib.
0022-460X,
251
, pp.
153
161
.
12.
Saeki
,
M.
, 2005, “
Analytical Study of Multiparticle Damping
,”
J. Sound Vib.
0022-460X,
281
, pp.
1131
1144
.
13.
Xu
,
Z. W.
,
Wang
,
M. Y.
, and
Chen
,
T. N.
, 2005, “
Particle Damping for Passive Vibration SuPPresson: Numerical Modeling and Experimental Investigation
,”
J. Sound Vib.
0022-460X,
279
, pp.
1097
1120
.
14.
Wu
,
C. J.
,
Liao
,
W. H.
, and
Wang
,
M. Y.
, 2004, “
Modeling of Granular Particle Damping Using Multiphase Flow Theory of Gas Particle
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
196
201
.
15.
Gidaspow
,
D.
, and
Huilin
,
K.
, 1998, “
Equation of State and Radial Distribution Function of FCC Particles in a CFB
,”
AIChE J.
0001-1541,
44
, pp.
279
293
.
16.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
, 1984, “
Kinetic Theories for Granular Flows: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field
,”
J. Fluid Mech.
0022-1120,
140
, pp.
223
256
.
17.
Anderson
,
K. G.
, and
Jackson
,
R.
, 1992, “
A Comparison of the Solutions of Some Proposed Equations of Motion of Granular Materials for Fully Developed Flow Down Inclined Planes
,”
J. Fluid Mech.
0022-1120,
241
, pp.
145
168
.
18.
Fayed
,
M. E.
, and
Otten
,
L.
eds., 1997,
Handbook of Powder Science and Technology
, 2nd eds.,
Chapman and Hall
, New York.
19.
Fan
,
L. S.
, and
Zhu
,
C.
, 1998,
Principle of Gas-Solid Flows
,
Cambridge University Press
, Cambridge, U.K.
20.
Jenkins
,
J. T.
, and
Savage
,
S. B.
, 1983, “
A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Spherical Particles
,”
J. Fluid Mech.
0022-1120,
130
, pp.
187
202
.
21.
Sinclair
,
J. L.
, and
Jackson
,
R.
, 1989, “
Gas-Particle Flow in Vertical Pipe with Particle-Particle Interactions
,”
AIChE J.
0001-1541,
35
(
9
), pp.
1473
1486
.
22.
Samuelsberg
,
A.
, and
Hjertager
,
B. H.
, 1996, “
Computational Modeling of Gas/Particle Flow in a Riser
,”
AIChE J.
0001-1541,
42
(
6
), pp.
1536
1546
.
23.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
, 1992, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization
, pp.
75
82
.
24.
Hui
,
K.
,
Haff
,
P. K.
,
Ungar
,
J.
, and
Jackson
,
R.
, 1984, “
Boundary Conditions for High Shear Grain Flows
,”
J. Fluid Mech.
0022-1120,
145
, pp.
223
233
.
25.
Frank
,
M. W.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw–Hill
, New York.
26.
Hanes
,
D. M.
,
Jenkins
,
J. T.
, and
Richman
,
M. W.
, 1988, “
The Thickness of Steady Plane Shear Flows of Circular Disks Driven by Identical Boundaries
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
969
974
.
27.
Babic
,
M.
, 1993, “
Gravity-Driven Flows of Smooth, Inelastic Disks between Parallel Bumpy Boundaries
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
59
64
.
You do not currently have access to this content.