Vibrations of and power flow between coupled beams have been the subject of many investigations, and various techniques have been developed over the years. However, most of the existing methods will require a certain level of modifications or adaptations to account for the variations in the coupling and∕or boundary conditions. In this study, a general analytical method is developed for predicting the vibrations of and power flow between two-coupled beams. The coupling between the beams is generically represented by two (translational and rotational) springs of arbitrary stiffnesses. Thus, many rigid and nonrigid connectors of practical interest can be directly taken into account. In addition, because the beams are elastically restrained at each end, the current method can be universally applied to different boundary conditions by simply varying the stiffnesses of the boundary springs. Numerical results are presented to show the excellent accuracy of the proposed approach.

1.
Remington
,
P. J.
, and
Manning
,
J. E.
, 1975, “
Comparison of Statistical Energy Analysis Power Flow Predictions With an Exact Calculation
,”
J. Acoust. Soc. Am.
0001-4966,
57
, pp.
374
379
.
2.
Davies
,
H. G.
, and
Wahab
,
M. A.
, 1981, “
Ensemble Averages of Power Flow in Randomly Excited Coupled Beams
,”
J. Sound Vib.
0022-460X,
77
, pp.
311
321
.
3.
Nefske
,
D. J.
, and
Sung
,
S. H.
, 1989, “
Power Flow Finite Element Analysis of Dynamics Systems: Basic Theory and Application to Beams
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
111
, pp.
94
100
.
4.
Wohlever
,
J. C.
, and
Bernhard
,
R. J.
, 1992, “
Mechanical Energy Flow Models of Rods and Beams
,”
J. Sound Vib.
0022-460X,
153
, pp.
1
19
.
5.
Cho
,
P. E.
, and
Bernhard
,
R. J.
, 1998, “
Energy Flow Analysis of Coupled Beams
,”
J. Sound Vib.
0022-460X,
211
, pp.
593
605
.
6.
Zhao
,
X.
, and
Vlahopoulos
,
N.
, 2004, “
A Basic Hybrid Finite Element Formulation for Midfrequency Analysis of Beams Connected at an Arbitrary Angle
,”
J. Sound Vib.
0022-460X,
269
, pp.
135
164
.
7.
De Langhe
,
K.
,
Moens
,
I.
,
Sas
,
P.
, and
Vandepitte
,
D.
, 1996, “
The Application of Finite Element Models to Study the Energy Flow Properties of Structural Junctions
,”
Proceeding of Internoise 96
,
Liverpool
,
UK
, pp.
2891
2894
.
8.
Buchmann
,
P.
,
Cuschieri
,
J. M.
, and
Yong
,
Y.
, 1994, “
Structural Power Flow Analysis Using Finite Element
,”
Proceedings of Noise-Con 94
, FL, pp.
557
562
.
9.
Hambric
,
S. A.
, 1990, “
Power Flow and Mechanical Intensity Calculations in Structural Finite Element Analysis
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
542
549
.
10.
Hugin
,
C. T.
, 1997, “
A Physical Description of the Response of Coupled Beams
,”
J. Sound Vib.
0022-460X,
203
, pp.
563
580
.
11.
Bercin
,
A. N.
, and
Langley
,
R. S.
, 1996, “
Application of the Dynamic Stiffness Technique to the In-plane Vibrations of Plate Structures
,”
Compos. Struct.
0263-8223,
59
, pp.
869
875
.
12.
Langley
,
R. S.
, 1990, “
Analysis of Power Flow in Beams and Frameworks Using the Direct-Dynamic Stiffness Method
,”
J. Sound Vib.
0022-460X,
136
, pp.
439
452
.
13.
Park
,
D. H.
,
Hong
,
S. Y.
,
Kil
,
F. G.
, and
Jeon
,
J. J.
, 2001, “
Power Flow Models and Analysis of In-Plane Waves in Finite Coupled Think Plates
,”
J. Sound Vib.
0022-460X,
244
, pp.
651
668
.
14.
Doyle
,
J. F.
, 1989,
Wave Propagation in Structures
,
Springer
,
Berlin
.
15.
Ahmida
,
K. M.
, and
Arruda
,
J. R. F.
, 2001, “
Spectral Element-Based Prediction of Active Power Flow in Timoshenko Beams
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
1669
1679
.
16.
Igawa
,
H.
,
Komatsu
,
K.
,
Yamaguchi
,
I.
, and
Kasai
,
T.
, 2004, “
Wave Propagation Analysis of Frame Structures Using the Spectral Element Method
,”
J. Sound Vib.
0022-460X,
277
, pp.
1071
1081
.
17.
Shankar
,
K.
, and
Keane
,
A. J.
, 1995, “
Energy Flow Predictions in a Structure of Rigidly Joined Beams Using Receptance Theory
,”
J. Sound Vib.
0022-460X,
180
, pp.
867
890
.
18.
Beshara
,
M.
, and
Keane
,
A. J.
, 1997, “
Vibrational Energy Flows in Beam Networks With Compliant and Dissipative Joints
,”
J. Sound Vib.
0022-460X,
203
, pp.
321
339
.
19.
Keane
,
A. J.
, 1992, “
Energy Flows Between Arbitrary Configurations of Conservatively Coupled Multimodal Elastic Subsystems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
436
, pp.
537
568
.
20.
Farag
,
N. H.
, and
Pan
,
J.
, 1997, “
Dynamic Response and Power Flow in Three-Dimensional Coupled Beam Structures. I. Analytical Modeling
,”
J. Acoust. Soc. Am.
0001-4966,
102
, pp.
315
325
.
21.
Li
,
W. L.
, 2000, “
Free Vibration of Beams with General Boundary Conditions
,”
J. Sound Vib.
0022-460X,
237
, pp.
709
725
.
22.
Li
,
W. L.
, and
Daniels
,
M.
, 2002, “
A Fourier Series Method for the Vibrations of Elastically Restrained Plates Arbitrarily Loaded With Springs and Masses
,”
J. Sound Vib.
0022-460X,
252
, pp.
768
781
.
23.
Li
,
W. L.
, 2002, “
Comparison of Fourier Sine and Cosine Series Expansions for Beams With Arbitrary Boundary Conditions
,”
J. Sound Vib.
0022-460X,
255
, pp.
185
194
.
You do not currently have access to this content.