This work is concerned with the similarity between the two important reduction schemes: optimal prediction and stochastic averaging. To this end, we consider a randomly perturbed Hamiltonian system and derive a generalized Langevin equation from a Kolmogorov backward equation. We then show the similarity by adopting conditional expectation as our projection operator in the generalized Langevin equation. The characteristics of the conditional expectation play a central role in our study.
Issue Section:
Technical Papers
1.
Carr
, J.
, 1980, Applications of Centre Manifold Theory
, Springer
, New York, NY
.2.
Constantin
, P.
, Foias
, C.
, Nicolaenko
, B.
, and Temam
, R.
, 1994, Integral Manifold and Inertial Manifold
, Springer
, New York, NY
.3.
Stratonovich
, R. L.
, 1963, Topics in the Theory of Random Noise
, Gordon and Breach
, New York, NY
.4.
Khasminskii
, R. Z.
, 1966, “On Stochastic Processes Defined by Defferential Equations with a Small Parameter
,” Theor. Probab. Appl.
0040-585X, 11
(2
), pp. 211
–228
.5.
Khasminskii
, R. Z.
, 1966, “A Limit Theorem for Solutions of Differential Equations with Random Right-Hand Side
,” Theor. Probab. Appl.
0040-585X, 11
(3
), pp. 390
–406
.6.
Namachchivaya
, N. S.
, 1990, “Stochastic Bifurcation
,” Appl. Math. Comput.
0096-3003, 38
, pp. 101
–159
.7.
Chorin
, A. J.
, Kast
, A.
, and Kupferman
, R.
, 1998, “Optimal Prediction of Underresolved Dynamics
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 95
, pp. 4094
–4098
.8.
Chorin
, A. J.
, Kast
, A. P.
, and Kupferman
, R.
, 1999, “On the Prediction of Large-Scale Dynamics Using Unresolved Computations
,” AMS Contemp. Math.
0271-4132, 238
, pp. 53
–75
.9.
Chorin
, A. J.
, Kast
, A. P.
, and Kupferman
, R.
, 1999, “Unresolved Computation and Optimal Prediction
,” Commun. Pure Appl. Math.
0010-3640, 52
, pp. 1231
–1254
.10.
Chorin
, A. J.
, Hald
, O. H.
, and Kupferman
, R.
, 2000, “Optimal Prediction and the Mori–Zwanzig Representation of Irreversible Processes
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 97
(7
), pp. 2968
–2973
.11.
Chorin
, A. J.
, Hald
, O. H.
, and Kupferman
, R.
, 2002, “Optimal Prediction With Memory
,” Physica D
0167-2789, 166
, pp. 239
–257
.12.
Mori
, H.
, 1965, “Transport, Collective Motion, and Brownian Motion
,” Prog. Theor. Phys.
0033-068X, 33
, pp. 423
–450
.13.
Zwanzig
, R.
, 1973, “Nonlinear Generalized Langevin Equations
,” J. Stat. Phys.
0022-4715, 9
, pp. 215
–220
.14.
Oksendal
, B.
, 2000, Stochastic Differential Equations: An Introduction with Applicatioins
, Springer Verlag
, Berlin, Germany
.15.
Courant
, R.
, and John
, F.
, 1974, Introduction to Calculus and Analysis
, Wiley
, New York, NY
.16.
Namachchivaya
, N. S.
, and Sowers
, R. B.
, 2002, “Rigorous Stochastic Averaging at a Center with Additive Noise
,” Meccanica
0025-6455, 37
, pp. 85
–114
.17.
Arnold
, L.
, Namachchivaya
, S. N.
, and Schenk
, K. L.
, 1996, “Toward an Understanding of Stochastic Hopf Bifurcations: A Case Study
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 6
(11
), pp. 1947
–1975
.Copyright © 2007
by American Society of Mechanical Engineers
You do not currently have access to this content.