In this paper, general in-plane trajectory tracking problem of a flexible beam is studied. To obtain the dynamic equations of motion of the beam, Hamiltonian dynamics is used and then Lagrange’s equations of beam dynamics and corresponding expressions for boundary conditions are derived. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane motion take place in two different time domains. By using two-time scale (TTS) control theory, a control scheme is elaborated that makes the orientation and position of the mass center of the beam track a desired trajectory while suppressing its vibration. TTS composite controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. For the fast subsystem, the proposed boundary control (BC) method does not require any information about vibration along the beam except at the end points, nor requires discretizing the partial differential equation of beam vibration to a set of ordinary differential equations. So, the method avoids the need for instruments to measure data from vibration of any point along the beam or designing an observer for estimating this information. Also, the proposed method prevents control spillover due to discretization. Simulation results show that fast BC is able to remove undesirable vibration of the flexible beam and the slow controller provides very good trajectory tracking with acceptable actuating forces/moments.

1.
Wang
,
D. A.
, and
Huang
,
Y. M.
, 2002, “
Robust Vibration Control of a Beam Using the H∞-Based Controller With Model Error Compensator
,”
J. Sound Vib.
0022-460X,
254
(
5
), pp.
877
895
.
2.
Baruh
,
H.
, 1999,
Analytical Dynamics
,
McGraw-Hill
,
Singapore
.
3.
Shin
,
H. C.
, and
Choy
,
S. B.
, 2001, “
Position Control of a Two-Link Flexible Manipulator Featuring Piezoelectric Actuators and Sensors
,”
Mechatronics
0957-4158,
11
(
200
), pp.
707
729
.
4.
Karkoub
,
M.
, and
Tamma
,
K.
, 2001, “
Modeling and M-Synthesis Control of Flexible Manipulators
,”
Comput. Struct.
0045-7949,
79
(
5
), pp.
543
551
.
5.
Hong
,
J.
, and
Jiang
,
L.
, 2000, “
Flexible Multimode Dynamics With Coupled Rigid and Deformation Motions
,”
Adv. Mech.
0137-3722,
30
(
1
), pp.
15
20
.
6.
Park
,
H. W.
,
Yang
,
H. S.
,
Park
,
Y. P.
, and
Kim
,
S. H.
, 1999, “
Position and Vibration Control of a Flexible Robot Manipulator Using Hybrid Controller
,”
Rob. Auton. Syst.
0921-8890,
28
(
1
), pp.
1
41
.
7.
Chou
,
J.
,
Hong
,
I. R.
, and
Liao
,
W. H.
, 1998, “
Robust Observer-Based OMF Vibration Control of Flexible Linkage Mechanisms Using Piezoelectric Films
,”
Int. J. Mech. Sci.
0020-7403,
40
(
8
), pp.
749
759
.
8.
Luo
,
Z. H.
, and
Guo
,
B. Z.
, 1997, “
Shear Force Feedback Control of a Single Link Flexible Robot With a Revolute Joint
,”
IEEE Trans. Autom. Control
0018-9286,
42
, pp.
53
65
.
9.
Valembois
,
R. E.
,
Fisette
,
P.
, and
Samin
,
J. C.
, 1997, “
Comparison of Various Techniques for Modeling Flexible Beams in Multimode Dynamics
,”
Nonlinear Dyn.
0924-090X,
12
, pp.
367
397
10.
Landau
,
I.
,
Langer
,
J.
,
Ray
,
D.
, and
Barmier
,
J.
, 1996, “
Robust Control of a 3D of Flexible Arm Using the Combined Pole Placement/Sensitivity Functional Shaping Method
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
4
), pp.
369
383
.
11.
Choy
,
S. B.
, and
Shin
,
H. C.
, 1996, “
A Hybrid Actuator Scheme for Robust Position Control of a Flexible Single-Link Manipulator
,”
J. Rob. Syst.
0741-2223,
13
(
6
), pp.
359
370
.
12.
Choy
,
S. B.
,
Cueing
,
C. C.
, and
Shin
,
H. C.
, 1995, “
Sliding Mode Control of Vibration in a Single-Link Flexible Arm With Parameter Vibrations
,”
J. Sound Vib.
0022-460X,
179
, pp.
737
748
.
13.
Mayo
,
J.
,
Dominguez
,
J.
, and
Cabaña
,
A. A.
, 1995, “
Geometrically Nonlinear Formulation of Beam in Flexible Multimode Dynamics
,”
ASME J. Vibr. Acoust.
0739-3717,
117
(
4
), pp.
501
509
.
14.
Braun
,
H.
, and
Tadikonda
,
S. S. K.
, 1989, “
Issues in Dynamics and Control of Flexible Robot Manipulators
,”
J. Guid. Control Dyn.
0731-5090,
12
, pp.
569
671
.
15.
Naganathan
,
G.
, and
Soni
,
A. H.
, 1987, “
Coupling Effects of Kinematics and Flexibility in Manipulators
,”
Int. J. Robot. Res.
0278-3649,
6
, pp.
75
85
.
16.
Zhang
,
D. J.
,
Huston
,
R. L.
, 1996, “
On Dynamic Stiffening of Flexible Bodies Having High Angular Velocity
,”
Mech. Struct. Mach.
0890-5452,
24
(
3
), pp.
313
29
.
17.
Leissa
,
A. W.
, 1981, “
Vibrational Aspects of Rotating Turbomachinary Blades
,”
Appl. Mech. Rev.
0003-6900,
34
, pp.
629
635
.
18.
Qinglei
,
H.
, and
Guangfu
,
M.
, 2005, “
Variable Structure Control and Active Vibration Suppression of Flexible Spacecraft During Attitude Maneuver
,”
Aerosp. Sci. Technol.
1270-9638,
9
, pp.
307
317
.
19.
Song
,
G.
,
Buck
,
N.
, and
Agrawal
,
B.
, 2001, “
Vibration Suppression of the Flexible Spacecraft During Attitude Control
,”
Acta Astronaut.
0094-5765,
49
(
2
), pp.
73
83
.
20.
Song
,
G.
,
Buck
,
N.
, and
Agrawal
,
B.
, 1999, “
Spacecraft Vibration Reduction Using Pulse-Width Pulse-Frequency Modulated Input Shaper
,”
J. Guid. Control Dyn.
0731-5090,
22
(
3
), pp.
433
440
.
21.
Yaman
,
M.
, and
Sen
,
S.
, 2007, “
Vibration Control of a Cantilever Beam of Varying Orientation
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1210
1220
.
22.
Lacarbonara
,
W.
, and
Yabuno
,
H.
, 2006, “
Refined Models of Elastic Beams Undergoing Large In-Plane Motions: Theory and Experiment
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
5066
5084
.
23.
Eissa
,
M.
, and
Amer
,
Y. A.
, 2004, “
Vibration Control of a Cantilever Beam Subject to Both External and Parametric Excitation
,”
Appl. Math. Comput.
0096-3003,
152
, pp.
611
619
.
24.
Yang
,
H.
,
Hong
,
J.
, and
Yu
,
Z.
, 2003, “
Experiment Validation on Modeling Theory for Rigid-Flexible Coupling Systems
,”
Acta Mech. Sin.
0459-1879,
35
(
2
), pp.
253
256
.
25.
Moheimani
,
S. O. R.
,
Pota
,
H.
, and
Petersen
,
I. R.
, 1998, “
Active Control of Vibrations in a Piezoelectric Laminate Cantilevered Beam
,”
Proceedings of International Symposium on Intelligent Robotic Systems
,
Bangalore, India
, pp.
505
512
.
26.
Indri
,
M.
, and
Tornambe
,
A.
, 1994, “
Robust Trajectory Tracking for Flexible Piezoelectric Structures
,”
IEE Proc.: Control Theory Appl.
1350-2379,
141
(
5
), pp.
289
294
.
27.
Burke
,
S. E.
, and
Hubbard
J. E.
, Jr.
, 1988, “
Distributed Actuator Control Design for Flexible Beams
,”
Automatica
0005-1098,
24
(
5
), pp.
619
627
.
28.
Krishnaprasad
,
P. S.
, and
Marsden
,
J. E.
, 1987, “
Hamiltonian Structures and Stability for Rigid Bodies With Flexible Attachments
,”
Arch. Ration. Mech. Anal.
0003-9527,
98
(
1
), pp.
71
93
.
29.
Mirovitch
,
L.
, and
Brauh
,
H.
, 1982, “
Control of Self-Adjoint Distributed-Parameter Systems
,”
J. Guid. Control Dyn.
0731-5090,
5
, pp.
60
66
.
30.
Balas
,
M. J.
, 1978, “
Active Control of Flexible Systems
,”
J. Optim. Theory Appl.
0022-3239,
25
, pp.
415
436
.
31.
Cai
,
G. P.
, and
Lim
,
C. W.
, 2006, “
Active Control of a Flexible Hub-Beam System Using Optimal Tracking Control Method
,”
Int. J. Mech. Sci.
0020-7403,
48
, pp.
1150
1162
.
32.
Cai
,
G. P.
,
Hong
,
J. Z.
, and
Simon
,
X. Y.
, 2005, “
Dynamic Analysis of a Flexible Hub-Beam System With Tip Mass
,”
Mech. Res. Commun.
0093-6413,
32
(
2
), pp.
173
190
.
33.
Yang
,
J. B.
,
Jiang
,
L. J.
, and
Chen
,
D. C. H.
, 2004, “
Dynamic Modeling and Control of a Rotating Euler-Bernoulli Beam
,”
J. Sound Vib.
0022-460X,
274
, pp.
863
875
.
34.
Cai
,
G. P.
,
Hong
,
J. Z.
, and
Simon
,
X. Y.
, 2004, “
Model Study and Active Control of a Rotating Flexible Cantilever Beam
,”
Int. J. Mech. Sci.
0020-7403,
46
(
6
), pp.
871
889
.
35.
Khulief
,
Y. A.
, 2001, “
Vibration Suppression in Rotating Beams Using Active Modal Control
,”
J. Sound Vib.
0022-460X,
242
(
4
), pp.
681
699
.
36.
Zhu
,
W. D.
, and
Mote
C. D.
, Jr.
, 1997, “
Dynamics Modeling and Optimal Control of Rotating Euler-Bernoulli Beams
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
802
808
.
37.
Yigit
,
A.
,
Scott
,
R. A.
, and Ulsoy A. G., 1988, “
Flexural Motion of a Rotating Beam Attached to a Rigid Body
,”
J. Sound Vib.
0022-460X,
121
, pp.
201
210
.
38.
Hunagud
,
S.
, and
Sarkar
,
S.
, 1989, “
Problem of the Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control Dyn.
0731-5090,
12
, pp.
438
441
.
39.
Fard
,
M. P.
, 2001, “
Exponential Stabilization of a Transversely Vibration Beam via Boundary Control
,”
J. Sound Vib.
0022-460X,
240
(
4
), pp.
613
622
.
40.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
41.
Canbolat
,
H.
,
Dawson
,
D.
,
Rahn
,
C. D.
, and
Vedagarbha
,
P.
, 1998, “
Boundary Control of a Cantilevered Flexible Beam With Point-Mass Dynamics at the Free End
,”
Mechatronics
0957-4158,
8
, pp.
163
186
.
42.
Fung
,
R. F.
, and
Tseng
,
C. C.
, 1999, “
Boundary Control of an Axially Moving String Via Lyapunov Method
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
1
), pp.
105
110
.
43.
Baicu
,
C. F.
,
Rahn
,
C. D.
, and
Nibali
,
B. D.
, 1996, “
Active Boundary Control of Elastic Cables: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
198
(
1
), pp.
17
26
.
44.
Shahruz
,
S. M.
, and
Krishna
,
L. G.
, 1996, “
Boundary Control of a Nonlinear String
,”
J. Sound Vib.
0022-460X,
195
, pp.
169
174
.
45.
Shahruz
,
S. M.
, and
Narasinha
,
C. A.
, 1997, “
Suppression of Vibration in Stretched Strings by the Boundary Control
,”
J. Sound Vib.
0022-460X,
204
, pp.
835
840
.
46.
Lee
,
S. Y.
, and
Mote
C. D.
, Jr.
, 1996, “
Vibration Control of an Axially Moving String by Boundary Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
66
74
.
47.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Wu
,
S. L.
, 1999, “
Stabilization of an Axially Moving String by Nonlinear Boundary Feedback
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
, pp.
117
121
.
48.
Qu
,
Z.
, 2001, “
Robust and Adaptive Boundary Control of a Stretched String on a Moving Transporter
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
470
476
.
49.
Shahruz
,
S. M.
, and
Kurmaji
,
D. A.
, 1997, “
Vibration Suppression of a Nonlinear Axially Moving String by Boundary Control
,”
J. Sound Vib.
0022-460X,
201
(
1
), pp.
145
152
.
50.
Shahruz
,
S. M.
, 1998, “
Boundary Control of the Axially Moving Kirchhoff String
,”
Automatica
0005-1098,
34
(
10
), pp.
1273
1277
.
51.
Zhang
,
F.
,
Dawson
,
D. M.
,
Nagarkatti
,
S. P.
, and
Rah
,
C. D.
, 2000, “
Boundary Control for a General Class of Nonlinear String Actuator Systems
,”
J. Sound Vib.
0022-460X,
229
(
1
), pp.
113
132
.
52.
Fung
,
R. F.
,
Wu
,
J. W.
,
Lu
,
P. Y.
, 2002, “
Adaptive Boundary Control of an Axially Moving String System
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
435
440
.
53.
Fung
,
R. F.
,
Chou
,
J. H.
, and
Kuo
,
Y. L.
, 2002, “
Optimal Boundary Control of an Axially Moving Material System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
55
61
.
54.
Li
,
Y.
,
Aron
,
D.
, and
Rah
,
C. D.
, 2002, “
Adaptive Vibration Isolation for Axially Moving Strings: Theory and Experiment
,”
Automatica
0005-1098,
38
(
3
), pp.
379
390
.
55.
Yang
,
K. J.
, and
Hong
,
K. S.
, 2002, “
Robust Boundary Control of an Axially Moving Steel Strip
,”
15th Triennial World Congress of the International Federation of Automatic Control
,
IFAC
, T-Tu-E19-2,
Barcelona, Spain
, Jul., pp.
21
26
.
56.
Qu
,
Z.
, 2002, “
An iterative Learning Algorithm for Boundary Control of a Stretched Moving String
,”
Automatica
0005-1098,
38
, pp.
821
827
.
57.
Chao
,
P. C. P.
, and
Lai
,
C. L.
, 2003, “
Boundary Control of an Axially Moving String Via Fuzzy Sliding Mode Control and Fuzzy Neural Network Methods
,”
J. Sound Vib.
0022-460X,
262
, pp.
795
813
.
58.
Yang
,
K. J.
,
Hong
,
K. S.
, and
Matsuno
,
F.
, 2004, “
Robust Adaptive Boundary Control of an Axially Moving String under a Spatiotemporally Varying Tension
,”
J. Sound Vib.
0022-460X,
273
, pp.
1007
1029
.
59.
Lia
,
T.
, and
Hou
,
Z.
, 2006, “
Exponential Stabilization of an Axially Moving String With geometrical Nonlinearity by Linear Boundary Feedback
,”
J. Sound Vib.
0022-460X,
296
, pp.
861
870
.
60.
Sadek
,
I. S.
,
Sloss
,
J. M.
,
Adali
,
S.
, and
Bruch
Jr,
J. C.
, 1997, “
Optimal Boundary Control of the Longitudinal Vibrations of a Rod Using a Maximum Principle
,”
J. Vib. Control
1077-5463,
3
, pp.
235
254
.
61.
Edwardian
,
F. E.
, 2005, “
Boundary Control, Quiet Boundaries, Super Stability and Super Instability
,”
Appl. Math. Comput.
0096-3003,
164
, pp.
327
349
.
62.
Littman
,
W.
, 1985, “
Boundary Control Theory for Beams and Plates
,”
Proceedings of 24th Conference on Decision and Control
,
Ft Lauderdale, FL
, Dec.,
24
, pp.
2007
2009
.
63.
Chen
,
G.
,
Delfour
,
M. C.
,
Krall
,
A. M.
, and
Payre
,
G.
, 1987, “
Modeling, Stabilization and Control of Serially Connected Beam
,”
SIAM J. Control Optim.
0363-0129,
25
, pp.
526
546
.
64.
Sloss
,
J. M.
,
Sadek
,
I. S.
,
Bruch
J. C.
, Jr.
, and
Adali
,
S.
, 1989, “
Boundary Feedback Control of a Vibrating Beam Subject to a Displacement Constraint
,”
Opt. Control Appl. Methods
0143-2087,
10
, pp.
81
87
.
65.
Rahn
,
C. D.
, and
Mote
C. D.
, Jr.,
, 1993, “
Axial Force Stabilization of Transverse Beam Vibration
,”
Proceedings of 14th Vibration and Control of Mechanical Systems, ASME Biennial Conference on Mechanical Vibration and Noise
,
Albuquerque. NM
, Sept., Vol.
61
, pp.
29
34
.
66.
Taylor
,
S. W.
, 1995, “
Exact Boundary Controllability of a Beam and Mass System
,”
Computation and Control IVProgress in Systems and Control Theory
, Bowers and Lund, eds.,
Birkhauser
,
Boston
.
67.
Baz
,
A.
, 1997, “
Boundary Control of Beams Using Active Constrained Layer Damping
,”
ASME J. Vibr. Acoust.
0739-3717,
9
, pp.
166
172
.
68.
Librescu
,
L.
, and
Na
,
S.
, 1998, “
Bending Vibration Control of Cantilevers Via Boundary Moment and Combined Feedback Control Laws
,”
ASME J. Vibr. Acoust.
0739-3717,
4
, pp.
733
746
.
69.
Librescu
,
L.
, and
Na
,
S.
, 1998, “
Boundary Control of Force and Forced Oscillations of Shear able Thin-walled Beam Cantilevers
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
687
700
.
70.
Sloss
,
J. M.
,
Bruch
J. C.
, Jr.
,
Sadek
,
I. S.
, and
Adali
,
S.
, 1998, “
Maximum Principle for Optimal Boundary Control of Vibrating Structures With Applications to Beams
,”
Dyn. Control
0925-4668,
8
, pp.
355
378
71.
Yu
,
J. Y.
,
Li
,
S. J.
,
Wang
,
Y. T.
, and
Liang
,
Z. D.
, 1999, “
Optimal Decay Rate of Vibrating Beam Equations Controlled by Combined Boundary Feedback Forces
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
42
(
4
), pp.
354
364
.
72.
Lara
,
A.
,
Bruch
J. C.
, Jr.
,
Sloss
,
J. M.
,
Sadek
,
I. S.
, and
Adali
,
S.
, 2000, “
Vibration Damping in Beams Via Piezo Actuation Using Optimal Boundary Control
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
6537
6554
.
73.
Li
,
S.
,
Wang
,
Y. T.
,
Liang
,
Z. D.
,
Yu
,
J. Y.
, and
Zhu
,
G.
, 2001, “
Stabilization of Vibrating Beam With a Tip Mass Controlled by Combined Feedback Forces
,”
J. Math. Anal. Appl.
0022-247X,
256
, pp.
13
38
.
74.
Luo
,
Z.
, 1993, “
Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results
,”
IEEE Trans. Autom. Control
0018-9286,
38
(
11
), pp.
1610
1622
.
75.
Luo
,
Z.
, and
Guo
,
B.
, 1995, “
Further Theoretical Results on Direct Strain Feedback Control of Flexible Robot Arms
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
40
), pp.
747
751
.
76.
Luo
,
Z.
,
Kitamura
,
N.
, and
Guo
,
B.
, 1995, “
Shear Force Feedback Control of Flexible Robot Arms
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
5
), pp.
760
765
.
77.
Morgul
,
O.
, 1991, “
Orientation and Stabilization of a Flexible Beam Attached to a Rigid Body: Planar Motion
,”
IEEE Trans. Autom. Control
0018-9286,
36
(
8
), pp.
953
962
.
78.
Morgul
,
O.
, 1992, “
Dynamic Boundary Control of an Euler-Bernoulli Beam
,”
IEEE Trans. Autom. Control
0018-9286,
37
, pp.
639
642
.
79.
Xu
,
C. Z.
, and
Baillieul
,
J.
, 1993, “
Stabilizability and Stabilization of a Rotating Body Beam System With Torque Control
,”
IEEE Trans. Autom. Control
0018-9286,
38
, pp.
1754
1765
.
80.
Morgul
,
O.
, 1994, “
Control and Stabilization of a Rotating Flexible Structure
,”
Automatica
0005-1098,
30
, pp.
351
356
.
81.
Sallet
,
G.
,
Xu
,
C. Z.
, and
Laousy
,
H.
, 1995, “
Boundary Feedback Stabilization of a Rotating Body-Beam System
,”
Proceedings of the IEEE Conference on Decision and Control
,
New Orleans, LA
, Dec., pp.
930
935
.
82.
Laousy
,
H.
,
Xu
,
C. Z.
, and
Sallet
,
G.
, 1996, “
Boundary Feedback Stabilization of a Rotating Body Beam System
,”
IEEE Trans. Autom. Control
0018-9286,
41
, pp.
241
245
.
83.
Liu
,
K.
, and
Liu
,
Z.
, 2000, “
Boundary Stabilization of a Non Homogeneous Beam With Rotary Inertia at the Tip
,”
J. Comput. Appl. Math.
0377-0427,
114
, pp.
1
10
.
84.
Queroz
,
M. S.
,
Dawson
,
D. M.
, and
Zhang
,
F.
, 1997, “
Boundary Control of a Rotating Flexible Body Beam System
,”
Proceedings of the 1997 IEEE International Conference on Control Applications
,
Hartford, CT
, Oct., pp.
812
817
.
85.
Chentouf
,
B.
, 2004, “
Dynamic Boundary Controls of a Rotating Body Beam System With Time Varying Angular Velocity
,”
J. Appl. Math.
1110-757X,
2
, pp.
107
126
.
86.
Chentouf
,
B.
, and
Wang
,
J. M.
, 2006, “
Stabilization and Optimal Decay Rate for a Non-Homogeneous Rotating Body-Beam With Dynamic Boundary Controls
,”
J. Math. Anal. Appl.
0022-247X,
318
, pp.
667
691
.
87.
Chentouf
,
B.
, 2006, “
A Simple Approach to Dynamic Stabilization of a Rotating Body-Beam
,”
Appl. Math. Lett.
0893-9659,
19
, pp.
97
107
.
88.
Zhao
,
H.
,
Rahn
,
C. D.
, 2006, “
On the Control of Axially Moving Material Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
527
531
.
89.
Kokotovic
,
P.
,
Khalil
,
H. K.
, and
O’Reilly
,
J.
, 1999,
Singular Perturbation Methods in Control: Analysis and Design
,
SIAM
,
Philadelphia
.
90.
Canudas
,
C.
,
Siciliano
,
B.
, and
Bastin
,
G.
, 1997,
Theory of Robot Control
,
Springer
,
New York
, Chap. 6.
91.
Queiroz
,
M. S.
,
Dawson
,
D. M.
,
Nagarkatti
,
S. P.
, and
Zhang
,
F.
, 2000,
Lyapunov-Based Control of Mechanical Systems
,
Birkhauser
,
Boston
.
92.
Barbalat
,
I.
, 1959, “
Systemes d’Equations Differentielles d’Oscillations Non Lineares
,”
Rev. Math. Pures Appl.
0370-6052,
4
, pp.
267
270
.
93.
Zubov
,
V. L.
, 1964,
Methods of A.M. Lyapunov and Their Application
, Leningrad, 1957 (English translation),
P. Noordhoff Ltd.
,
Gorning, Netherlands
.
You do not currently have access to this content.