Many vibrating mechanical and structural systems consist of a host structure to which a number of continuous attachments are mounted. In this paper, an efficient method is proposed for determining the eigenfrequencies of an arbitrarily supported Euler–Bernoulli beam with multiple in-span helical spring-mass systems, where the mass of the helical spring is considered. For modeling purposes, each helical spring can be modeled as an axially vibrating elastic rod. The traditional approach of using the eigenfunctions of the beam and rod in the assumed modes method often leads to an intolerably slow convergence rate. To expedite convergence, a spatially linear-varying function that corresponds to the static deformed shape of a rod is included in the series expansion for the rod. The proposed approach is systematic to apply, easy to code, computationally efficient, and can be easily modified to accommodate various beam boundary conditions. Numerical experiments show that with the addition of a spatially linear-varying function, the proposed scheme converges very quickly with the exact solution.

1.
Cha
,
P. D.
, and
Wong
,
W. C.
, 1999, “
A Novel Approach to Determine the Frequency Equations of Combined Dynamical Systems
,”
J. Sound Vib.
0022-460X,
219
(
4
), pp.
689
706
.
2.
Cha
,
P. D.
, 2002, “
Eigenvalues of a Linear Elastica Carrying Lumped Masses, Springs and Viscous Dampers
,”
J. Sound Vib.
0022-460X,
257
(
4
), pp.
798
808
.
3.
Dowell
,
E. H.
, 1979, “
On Some General Properties of Combined Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
206
209
.
4.
Posiadała
,
B.
, 1997, “
Free Vibrations of Uniform Timoshenko Beams With Attachments
,”
J. Sound Vib.
0022-460X,
204
(
2
), pp.
359
369
.
5.
Gürgöze
,
M.
, 1998, “
On the Alternative Formulations of the Frequency Equation of a Bernoulli–Euler Beam to Which Several Spring-Mass Systems are Attached In-Span
,”
J. Sound Vib.
0022-460X,
217
(
3
), pp.
585
595
.
6.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
, 1985, “
Vibration of Thick Plates Carrying Concentrated Masses
,”
J. Sound Vib.
0022-460X,
103
(
3
), pp.
357
369
.
7.
Nicholson
,
J. W.
, and
Bergman
,
L. A.
, 1986, “
Free Vibration of Combined Dynamical System
,”
J. Eng. Mech.
0733-9399,
112
, pp.
1
13
.
8.
Kukla
,
S.
, 1997, “
Application of Green Functions in Frequency Analysis of Timoshenko Beams With Oscillators
,”
J. Sound Vib.
0022-460X,
205
(
3
), pp.
355
363
.
9.
Goel
,
R. P.
, 1976, “
Free Vibrations of a Beam-Mass System With Elastically Restrained Ends
,”
J. Sound Vib.
0022-460X,
47
(
1
), pp.
9
14
.
10.
Chang
,
T. P.
,
Chang
,
F. I.
, and
Liu
,
M. F.
, 2001, “
On the Eigenvalues of a Viscously Damped Simple Beam Carrying Point Masses and Springs
,”
J. Sound Vib.
0022-460X,
240
(
4
), pp.
769
778
.
11.
Wu
,
J. S.
, and
Lin
,
T. L.
, 1990, “
Free Vibration Analysis of a Uniform Cantilever Beam With Point Masses by an Analytical-and-Numerical-Combined Method
,”
J. Sound Vib.
0022-460X,
136
(
2
), pp.
201
213
.
12.
Wu
,
J. S.
, and
Chou
,
H. M.
, 1999, “
A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses
,”
J. Sound Vib.
0022-460X,
220
(
3
), pp.
451
468
.
13.
Wu
,
J. S.
,
Chen
,
D. W.
, and
Chou
,
H. M.
, 1999, “
On the Eigenvalues of a Uniform Cantilever Beam Carrying Any Number of Spring-Damper-Mass Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
1277
1295
.
14.
Wu
,
J. S.
, and
Chen
,
D. W.
, 2001, “
Free Vibration Analysis of a Timoshenko Beam Carrying Multiple Spring-Mass Systems by Using the Numerical Assembly Technique
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
1039
1058
.
15.
Chen
,
D. W.
, and
Wu
,
J. S.
, 2002, “
The Exact Solutions for the Natural Frequencies and Mode Shapes of Non-Uniform Beam With Multiple Spring-Mass Systems
,”
J. Sound Vib.
0022-460X,
255
(
2
), pp.
299
322
.
16.
Ercoli
,
L.
, and
Laura
,
P. A. A.
, 1987, “
Analytical and Experimental Investigation on Continuous Beams Carrying Elastically Mounted Masses
,”
J. Sound Vib.
0022-460X,
114
(
3
), pp.
519
533
.
17.
Kukla
,
S.
, and
Posiadała
,
B.
, 1994, “
Free Vibrations of Beams With Elastically Mounted Masses
,”
J. Sound Vib.
0022-460X,
175
(
4
), pp.
557
564
.
18.
Gürgöze
,
M.
, 1996, “
On the Eigenfrequencies of a Cantilever Beam With Attached Tip Mass and a Spring-Mass System
,”
J. Sound Vib.
0022-460X,
190
(
2
), pp.
149
162
.
19.
Wu
,
J. S.
, and
Chou
,
H. M.
, 1999, “
A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses
,”
J. Sound Vib.
0022-460X,
220
(
3
), pp.
451
468
.
20.
Cha
,
P. D.
, 2001, “
Natural Frequencies of a Linear Elastica Carrying Any Number of Sprung Masses
,”
J. Sound Vib.
0022-460X,
247
(
1
), pp.
185
194
.
21.
James
,
M. L.
,
Smith
,
G. M.
,
Wolford
,
J. C.
, and
Whaley
,
P. W.
, 1994,
Vibration of Mechanical and Structural Systems
,
Harpercollins College Publishers
,
New York
.
22.
Gürgöze
,
M.
, 2005, “
On the Eigenfrequencies of a Cantilever Beam Carrying a Tip Spring-Mass System With Mass of the Helical Spring Considered
,”
J. Sound Vib.
0022-460X,
282
(
3–5
), pp.
1221
1230
.
23.
Gürgöze
,
M.
,
Çakar
,
O.
, and
Zeren
,
S.
, 2006, “
On the Frequency Equation of a Combined System Consisting of a Simply Supported Beam and In-Span Helical Spring-Mass With Mass of the Helical Spring Considered
,”
J. Sound Vib.
0022-460X,
295
(
1–2
), pp.
436
449
.
24.
Wu
,
J. S.
, and
Hsu
,
T. F.
, 2007, “
Free Vibration Analyses of Simply Supported Beams Carrying Multiple Point Masses and Spring-Mass Systems With Mass of Each Helical Spring Considered
,”
Int. J. Mech. Sci.
0020-7403,
49
, pp.
834
852
.
25.
Wu
,
J. J.
, 2005, “
Use of Equivalent Mass Method for Free Vibration Analyses of a Beam Carrying Multiple Two-Dof Spring-Mass Systems With Inertia Effect of the Helical Springs Considered
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
, pp.
653
678
.
26.
Wu
,
J. J.
, 2006, “
Study on the Inertia Effect of Helical Springs of the Absorber on Suppressing the Dynamic Responses of a Beam Subjected to a Moving Load
,”
J. Sound Vib.
0022-460X,
297
(
3–5
), pp.
981
999
.
27.
Meirovitch
,
L.
, 2002,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
28.
Bisplinghoff
,
R. L.
, and
Ashley
,
H.
, 1962,
Principles of Aeroelasticity
,
Wiley
,
New York
.
29.
Cornwell
,
R. E.
,
Craig
,
R. R.
, Jr.
, and
Johnson
,
C. P.
, 1983, “
On the Application of the Mode-Acceleration Method to Structural Engineering Problems
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
11
, pp.
679
688
.
30.
Craig
,
R. R.
, Jr.
, 1981,
Structural Dynamics: An Introduction to Computer Methods
,
Wiley
,
New York
.
31.
Gu
,
K.
, and
Tongue
,
B. H.
, 1987, “
A Method to Improve the Modal Convergence for Structures With External Forcing
,”
J. Appl. Mech.
0021-8936,
54
, pp.
904
909
.
32.
Gere
,
J. M.
, and
Timoshenko
,
S. P.
, 1997,
Mechanics of Materials
,
PWS
,
Boston, MA
.
33.
Bathe
,
K. J.
, 1995,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.