Simple spring-mass systems are often deployed as vibration absorbers to quench excess vibration in structural systems. In this paper, multiple two-degree-of-freedom oscillators that translate and rotate are used to mitigate vibration by imposing points of zero displacement, or nodes, along any arbitrarily supported elastic structure during harmonic excitations. Nodes can often be enforced along an elastic structure by attaching suitably chosen two-degree-of-freedom oscillators. In application, however, the actual selection of the oscillator parameters also depends on the tolerable translational and rotational vibration amplitudes of the attached oscillators, because if these vibration amplitudes are large, then theoretically feasible solutions would not be practical to implement. In this paper, an efficient approach is developed that can be used to tune the oscillator parameters that are required to induce nodes, while satisfying the tolerable vibration amplitudes of the oscillators. Instead of solving for the oscillator parameters directly, the restoring forces exerted by the springs are computed instead. The proposed approach is simple to apply, efficient to solve, and more importantly, allows one to easily impose the tolerable translational and rotational vibration amplitudes of the two-degree-of-freedom oscillators. A design guide for choosing the required oscillator parameters is outlined, and numerical experiments are performed to validate the proposed scheme of imposing nodes along a structure at multiple locations during harmonic excitations.

1.
Jacquot
,
R. G.
, 1978, “
Optimal Dynamic Vibration Absorbers for General Beam Systems
,”
J. Sound Vib.
0022-460X,
60
(
4
), pp.
535
542
.
2.
Özgüven
,
H. N.
, and
Çandir
,
B.
, 1986, “
Suppressing the First and Second Resonances of Beams by Dynamic Vibration Absorbers
,”
J. Sound Vib.
,
111
(
3
), pp.
377
390
. 0022-460X
3.
Manikanahally
,
D. N.
, and
Crocker
,
M. J.
, 1991, “
Vibration Absorbers for Hysteretically Damped Mass-Loaded Beams
,”
ASME J. Vibr. Acoust.
0739-3717,
113
, pp.
116
122
.
4.
Keltie
,
R. F.
, and
Cheng
,
C. C.
, 1995, “
Vibration Reduction of a Mass-Loaded Beam
,”
J. Sound Vib.
0022-460X,
187
(
2
), pp.
213
228
.
5.
Patten
,
W. N.
,
Sack
,
R. L.
, and
He
,
Q.
, 1996, “
Controlled Semiactive Hydraulic Vibration Absorber for Bridges
,”
J. Struct. Eng.
0733-9445,
122
, pp.
187
192
.
6.
Lee-Glauser
,
G. J.
,
Ahmadi
,
G.
, and
Horta
,
L. G.
, 1997, “
Integrated Passive/Active Vibration Absorber for Multistory Buildings
,”
J. Struct. Eng.
0733-9445,
123
, pp.
499
504
.
7.
Nagaya
,
K.
, and
Li
,
L.
, 1997, “
Control of Sound Noise Radiated From a Plate Using Dynamic Absorbers Under the Optimization by Neural Network
,”
J. Sound Vibrat.
,
208
(
2
), pp.
289
298
. 0022-460X
8.
Nagaya
,
K.
,
Kurusu
,
A.
,
Ikai
,
S.
, and
Shitani
,
Y.
, 1999, “
Vibration Control of a Structure by Using a Tunable Absorber and an Optimal Vibration Absorber Under Auto-Tuning Control
,”
J. Sound Vib.
0022-460X,
228
(
4
), pp.
773
792
.
9.
Jacquot
,
R. G.
, 2001, “
Suppression of Random Vibration in Plates Using Vibration Absorbers
,”
J. Sound Vib.
,
248
(
4
), pp.
585
596
. 0022-460X
10.
Alsuwaiyan
,
A. S.
, and
Shaw
,
S. W.
, 2002, “
Performance and Dynamic Stability of General-Path Centrifugal Pendulum Vibration Absorbers
,”
J. Sound Vib.
0022-460X,
252
(
5
), pp.
791
815
.
11.
Alsaif
,
K.
, and
Foda
,
M. A.
, 2002, “
Vibration Suppression of a Beam Structure by Intermediate Masses and Springs
,”
J. Sound Vib.
,
256
(
4
), pp.
629
645
. 0022-460X
12.
Dayou
,
J.
, and
Brennan
,
M. J.
, 2002, “
Global Control of Structural Vibration Using Multiple-Tuned Tunable Vibration Neutralizers
,”
J. Sound Vibrat.
,
258
(
2
), pp.
345
357
. 0022-460X
13.
Bhatta
,
P.
, and
Sinha
,
A.
, 2003, “
A Discrete-Time, Optimal, Active Vibration Absorber
,”
J. Sound Vib.
,
268
(
1
), pp.
201
208
. 0022-460X
14.
Yaman
,
M.
, and
Sen
,
S.
, 2004, “
The Analysis of the Orientation Effect of Non-Linear Flexible Systems on Performance of the Pendulum Absorber
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
5
), pp.
741
752
.
15.
Ozer
,
M. B.
, and
Royston
,
T. J.
, 2005, “
Application of Sherman-Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached To Multi-Degree of Freedom Systems
,”
J. Sound Vib.
0022-460X,
283
(
3–5
), pp.
1235
1249
.
16.
Cha
,
P. D.
, 2005, “
Enforcing Nodes at Required Locations in a Harmonically Excited Structure Using Simple Oscillators
,”
J. Sound Vib.
0022-460X,
279
(
3–5
), pp.
799
816
.
17.
Cha
,
P. D.
, and
Ren
,
G.
, 2006, “
Inverse Problem of Imposing Nodes to Suppress Vibration for a Structure Subjected to Multiple Harmonic Excitations
,”
J. Sound Vib.
,
290
(
1–2
), pp.
425
447
. 0022-460X
18.
Cha
,
P. D.
, and
Zhou
,
X.
, 2006, “
Imposing Points of Zero Displacements and Zero Slopes Along Any Linear Structure During Harmonic Excitations
,”
J. Sound Vib.
0022-460X,
297
(
1–2
), pp.
55
71
.
19.
Wong
,
W. O.
,
Tang
,
S. L.
,
Cheung
,
Y. L.
, and
Cheng
,
L.
, 2007, “
Design of a Dynamic Vibration Absorber for Vibration Isolation of Beams Under Point or Distributed Loading
,”
J. Sound Vib.
,
301
(
3–5
), pp.
898
908
. 0022-460X
20.
Chang
,
T. P.
, and
Chang
,
C. Y.
, 1998, “
Vibration Analysis of Beams With a Two Degree-Of-Freedom Spring-Mass System
,”
Int. J. Solids Struct.
0020-7683,
35
(
5–6
), pp.
383
401
.
21.
Wu
,
J. -J.
, and
Whittaker
,
A. R.
, 1999, “
The Natural Frequencies and Mode Shapes Of a Uniform Cantilever Beam With Multiple Two-DOF Spring-Mass Systems
,”
J. Sound Vib.
0022-460X,
227
, pp.
361
381
.
22.
Wu
,
J. -J.
, 2006, “
Use of Equivalent Mass Method for Free Vibration Analyses of A Beam Carrying Multiple Two-DOF Spring-Mass Systems With Inertia Effect of the Helical Springs Considered
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
, pp.
653
678
.
23.
Zuo
,
L.
, and
Nayfeh
,
S. A.
, 2004, “
Minimax Optimization of Multi-Degree-of-Freedom Tuned-Mass Dampers
,”
J. Sound Vib.
0022-460X,
272
(
3–5
), pp.
893
908
.
24.
Zuo
,
L.
, and
Nayfeh
,
S. A.
, 2006, “
The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
56
65
.
25.
Cha
,
P. D.
, 2007, “
Free Vibration of a Uniform Beam With Multiple Elastically Mounted Two-Degree-of-Freedom Systems
,”
J. Sound Vib.
,
307
(
1–2
), pp.
386
392
. 0022-460X
26.
Meirovitch
,
L.
, 2002,
Fundamentals of Vibrations
,
McGraw-Hill
,
New York
.
27.
Gonçalves
,
P. J. P.
,
Brennan
,
M. J.
, and
Elliott
,
S. J.
, 2007, “
Numerical Evaluation of High-Order Modes of Vibration in Uniform Euler-Bernoulli Beams
,”
J. Sound Vib.
,
301
, pp.
1035
1039
. 0022-460X
You do not currently have access to this content.