Orthogonal eigenstructure control is a novel active control method for vibration suppression in multi-input multi-output linear systems. This method is based on finding an output feedback control gain matrix in such a way that the closed-loop eigenvectors are almost orthogonal to the open-loop ones. Singular value decomposition is used to find the matrix, which spans the null space of the closed-loop eigenvectors. This matrix has a unique property that has been used in this new method. This unique property, which has been proved here, can be used to regenerate the open-loop system by finding a coefficient vector, which leads to a zero gain matrix. Also several vectors, which are orthogonal to the open-loop eigenvectors, can be found simultaneously. The proposed method does not need any trial and error procedure and eliminates not only the need to specify any location or area for the closed-loop eigenvalues but also the requirements of defining the desired eigenvectors. This method determines a set of limited number of closed-loop systems. Also, the elimination of the extra constraints on the locations of the closed-loop poles prevents the excessive force in actuators.

1.
Moore
,
B. C.
, 1976, “
On the Flexibility Offered by State Feedback in Multivariable Systems Beyond Closed Loop Eigenvalue Assignment
,”
IEEE Trans. Autom. Control
0018-9286,
21
, pp.
689
692
.
2.
Clark
,
W. W.
, and
Shelley
,
F. J.
, 1997, “
Experiments in Eigenstructure Assignment for Active Mode Localization in a Flexible Beam
,”
Proceedings of the American Control Conference
, Albuquerque, NM, pp.
1859
1863
.
3.
Wonham
,
W.
, 1967, “
On Pole Assignment in Multi-Input Controllable Linear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
12
(
6
), pp.
660
665
.
4.
Klein
,
G.
, and
Moore
,
B. C.
, 1977, “
Eigenvalue-Generalized Eigenvector Assignment With State Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
22
(
1
), pp.
140
141
.
5.
Srinathkumar
,
S.
, 1978, “
Eigenvalue/Eigenvector Assignment Using Output Feedback
,”
IEEE Trans. Autom. Control
0018-9286,
23
(
1
), pp.
79
81
.
6.
Fahmy
,
M. M.
, and
O’Reilly
,
J.
, 1982, “
On Eigenstructure Assignment in Linear Multivariable Systems
,”
IEEE Trans. Autom. Control
0018-9286,
27
(
3
), pp.
690
693
.
7.
Fahmy
,
M. M.
, and
Oreilly
,
J.
, 1983, “
Eigenstructure Assignment in Linear Multivariable Systems—A Parametric Solution
,”
IEEE Trans. Autom. Control
0018-9286,
28
(
10
), pp.
990
994
.
8.
Andry
,
A. N.
,
Shapiro
,
E. Y.
, and
Chung
,
J. C.
, 1983, “
Eigenstructure Assignment for Linear Systems
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
AES-19
(
5
), pp.
711
729
.
9.
Calvo-Ramon
,
J. R.
, 1986, “
Eigenstructure Assignment by Output Feedback and Residue Analysis
,”
IEEE Trans. Autom. Control
0018-9286,
31
(
3
), pp.
247
249
.
10.
Cunningham
,
T. B.
, 1980, “
Eigenspace Selection Procedures for Closed Loop Response Shaping with Modal Control
,”
Proceedings of the 19th IEEE Conference on Decision and Control
, Albuquerque, NM, pp.
178
186
.
11.
Choura
,
S.
, and
Yigit
,
A. S.
, 2001, “
Confinement and Suppression of Structural Vibrations
,”
ASME J. Vibr. Acoust.
0739-3717,
123
, pp.
496
501
.
12.
Choura
,
S. A.
, and
Yigit
,
A. S.
, 1995, “
Vibration Confinement in Flexible Structures by Distributed Feedback
,”
Comput. Struct.
0045-7949,
54
(
3
), pp.
531
540
.
13.
Yigit
,
A. S.
, and
Choura
,
S.
, 1995, “
Vibration Confinement in Flexible Structures Via Alteration of Mode Shapes by Using Feedback
,”
J. Sound Vib.
0022-460X,
179
(
4
), pp.
553
567
.
14.
Choura
,
S.
,
El-Borgi
,
S.
, and
Nayfeh
,
A. H.
, 2005, “
Axial Vibration Confinement in Nonhomogenous Rods
,”
Shock Vib.
1070-9622,
12
, pp.
177
195
.
15.
Choura
,
S.
, and
Yigit
,
A. S.
, 2005, “
Active Control of Linear Time-Varying Structures by Confinement of Vibrations
,”
J. Vib. Control
1077-5463,
11
, pp.
89
102
.
16.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 1994, “
Closed-Loop Mode Localization for Vibration Control in Flexible Structures
,”
Proceedings of the American Control Conference
, Baltimore, MD, pp.
1826
1830
.
17.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 1996, “
Eigenvector Scaling for Mode Localization in Vibrating Systems
,”
J. Guid. Control Dyn.
0731-5090,
19
(
6
), pp.
1342
1348
.
18.
Corr
,
L. R.
, and
Clark
,
W. W.
, 1999, “
Vibration Confinement Using Piezoelectric Transducers and Eigenstructure Placement
,” Paper No. AIAA-99-1552.
19.
Corr
,
L. R.
, and
Clark
,
W. W.
, 1999, “
Active and Passive Vibration Confinement Using Piezoelectric Transducers and Dynamic Vibration Absorbers
,”
Proc. SPIE
0277-786X,
3668
, pp.
747
758
.
20.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Experimental Application of Feedback Control to Localize Vibration
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
143
150
.
21.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems With Consideration of Limited Actuator Placement, Part 2: Simulations and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
165
168
.
22.
Tang
,
J.
, and
Wang
,
K. W.
, 2003, “
A Simultaneous Active-Passive Approach for Structural Vibration Confinement Using Piezoelectric Actuators
,”
Proceedings of the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferences
, Norfolk, VA, pp.
1
11
.
23.
Tang
,
J.
, and
Wang
,
K. W.
, 2004, “
Vibration Confinement via Optimal Eigenvector Assignment and Piezoelectric Networks
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
27
36
.
24.
Wu
,
T. Y.
, and
Wang
,
K. W.
, 2004, “
Vibration Isolator Design Via Energy Confinement Through Eigenvector Assignment and Piezoelectric Networking
,”
Proc. SPIE
0277-786X,
5386
, pp.
11
25
.
25.
Slater
,
G. L.
, and
Zhang
,
Q.
, 1990, “
Controller Design by Eigenspace Assignment
,” Paper No. AIAA-90-1193-CP, pp.
19
31
.
26.
Rastgaar Aagaah
,
M.
, 2008, “
Vibration Suppression Using Orthogonal Eigenstructure Control
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
27.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems with Consideration of Limited Actuator Placement, Part 1: Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
160
164
.
28.
Golub
,
G. H.
, and
Loan
,
C. F. V.
, 1996,
Matrix Computations
,
The Johns Hopkins University Press
,
Baltimore, MD
.
You do not currently have access to this content.