Steady-state periodical response is investigated for planar vibration of axially moving viscoelastic beams subjected external transverse loads. A model of the coupled planar vibration is established by introducing a coordinate transform. The model can reduce to two nonlinear models of transverse vibration. The finite difference scheme is developed to calculate steady-state response numerically. Numerical results demonstrate there are steady-state periodic responses in transverse vibration, and resonance occurs if the external load frequency approaches the linear natural frequencies. The effect of material parameters and excitation parameters on the amplitude of the steady-state responses are examined. Numerical results also indicate that the model of coupled vibration and two models of transverse vibration predict qualitatively the same tendencies with the changing parameters, and the two models of transverse vibration yield satisfactory results.

1.
Thurman
,
A. L.
, and
Mote
,
C. D.
, Jr.
, 1969, “
Free, Periodic, Nonlinear Oscillation of an Axially Moving Strip
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
83
91
.
2.
Tabarrok
,
B.
,
Leech
,
C. M.
, and
Kim
,
Y. I.
, 1974, “
On the Dynamics of an Axially Moving Beam
,”
J. Franklin Inst.
0016-0032,
297
, pp.
201
220
.
3.
Wang
,
K. W.
, and
Mote
,
C. D.
, Jr.
, 1986, “
Vibration Coupling Analysis of Band/Wheel Mechanical Systems
,”
J. Sound Vib.
0022-460X,
109
, pp.
237
258
.
4.
Wang
,
K. W.
, and
Mote
,
C. D.
, Jr.
, 1987, “
Band/Wheel System Vibration Under Impulsive Boundary Excitation
,”
J. Sound Vib.
0022-460X,
115
, pp.
203
216
.
5.
Wang
,
K. W.
, 1991, “
Dynamic Stability Analysis of High Speed Axially Moving Bands With End Curvatures
,”
ASME J. Vibr. Acoust.
0739-3717,
113
, pp.
62
68
.
6.
Hwang
,
S. -J.
, and
Perkins
,
N. C.
, 1992, “
Supercritical Stability of an Axially Moving Beam Part 1: Model and Equilibrium Analysis
,”
J. Sound Vib.
0022-460X,
154
, pp.
381
396
.
7.
Hwang
,
S. -J.
, and
Perkins
,
N. C.
, 1992, “
Supercritical Stability of an Axially Moving Beam Part 1: Vibration and Stability Analysis
,”
J. Sound Vib.
0022-460X,
154
, pp.
397
409
.
8.
Hwang
,
S. -J.
, and
Perkins
,
N. C.
, 1994, “
High Speed Stability of Coupled Band/Wheel Systems: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
169
, pp.
459
483
.
9.
Riedel
,
C. H.
, and
Tan
,
C. A.
, 2002, “
Coupled, Forced Response of an Axially Moving Strip With Internal Resonance
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
101
116
.
10.
Kong
,
L.
, and
Parker
,
R. G.
, 2004, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
109
119
.
11.
Wickert
,
J. A.
, 1992, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
27
, pp.
503
517
.
12.
Suweken
,
G.
, and
Van Horssen
,
W. T.
, 2003, “
On the Weakly Nonlinear, Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
197
223
.
13.
Pellicano
,
F.
, and
Zirilli
,
F.
, 1998, “
Boundary Layers and Non-Linear Vibrations in an Axially Moving Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
33
, pp.
691
711
.
14.
Ravindra
,
B.
, and
Zhu
,
W. D.
, 1998, “
Low Dimensional Chaotic Response of Axially Accelerating Continuum in the Supercritical Regime
,”
Arch. Appl. Mech.
0939-1533,
68
, pp.
195
205
.
15.
Chakraborty
,
G.
, and
Mallik
,
A. K.
, 1998, “
Parametrically Excited Nonlinear Traveling Beams With and Without External Forcing
,”
Nonlinear Dyn.
0924-090X,
17
, pp.
301
324
.
16.
Chakraborty
,
G.
,
Mallik
,
A. K.
, and
Hatwal
,
H.
, 1999, “
Non-Linear Vibration of a Travelling Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
34
, pp.
655
670
.
17.
Pellicano
,
F.
, and
Vestroni
,
F.
, 2000, “
Nonlinear Dynamics and Bifurcations of an Axially Moving Beam
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
21
30
.
18.
Parker
,
R. G.
, and
Lin
,
Y.
, 2001, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
49
57
.
19.
Pellicano
,
F.
,
Fregolent
,
A.
,
Bertuzzi
,
A.
, and
Vestroni
,
F.
, 2001, “
Primary and Parametric Non-Linear Resonances of a Power Transmission Belt
,”
J. Sound Vib.
0022-460X,
244
, pp.
669
684
.
20.
Pellicano
,
F.
, and
Vestroni
,
F.
, 2002, “
Complex Dynamic of High-Speed Axially Moving Systems
,”
J. Sound Vib.
0022-460X,
258
, pp.
31
44
.
21.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2005, “
Steady-State Response of Axially Moving Viscoelastic Beams With Pulsating Speed: Comparison of Two Nonlinear Models
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
37
50
.
22.
Chen
,
L. Q.
, and
Yang
,
X. D.
, 2007, “
Nonlinear Free Vibration of an Axially Moving Beam: Comparison of Two Models
,”
J. Sound Vib.
0022-460X,
299
, pp.
348
354
.
23.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Boyaci
,
H.
, 2001, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
107
115
.
24.
Marynowski
,
K.
, 2002, “
Non-Linear Dynamic Analysis of an Axially Moving Viscoelastic Beam
,”
J. Theor. Appl. Mech.
,
40
, pp.
465
482
.
25.
Marynowski
,
K.
, and
Kapitaniak
,
T.
, 2002, “
Kelvin–Voigt Versus Bügers Internal Damping in Modeling of Axially Moving Viscoelastic Web
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
1147
1161
.
26.
Marynowski
,
K.
, 2004, “
Non-Linear Vibrations of an Axially Moving Viscoelastic Web With Time-Dependent Tension
,”
Chaos, Solitons Fractals
0960-0779,
21
, pp.
481
490
.
27.
Sze
,
K. Y.
,
Chen
,
S. H.
, and
Huang
,
J. L.
, 2005, “
The Incremental Harmonic Balance Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
0022-460X,
281
, pp.
611
626
.
28.
Chen
,
S. H.
,
Huang
,
J. L.
, and
Sze
,
K. Y.
, 2007, “
Multidimensional Lindstedt–Poincaré Method for Nonlinear Vibration of Axially Moving Beams
,”
J. Sound Vib.
0022-460X,
306
, pp.
1
11
.
29.
Marynowski
,
K.
, and
Kapitaniak
,
T.
, 2007, “
Zener Internal Damping in Modelling of Axially Moving Viscoelastic Beam With Time-Dependent Tension
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
118
131
.
30.
Zhang
,
W.
, and
Song
,
C. Z.
, 2007, “
Higher-Dimensional Periodic and Chaotic Oscillations for Viscoelastic Moving Belt With Multiple Internal Resonances
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
17
, pp.
1637
1660
.
31.
Ghayesh
,
M. H.
, and
Khadem
,
S. E.
, 2008, “
Rotary Inertia and Temperature Effects on Non-Nonlinear Vibration, Steady-State Response and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Mech. Sci.
0020-7403,
50
, pp.
389
404
.
32.
Mockensturm
,
E. M.
, and
Guo
,
J.
, 2005, “
Nonlinear Vibration of Parametrically Excited, Viscoelastic, Axially Moving Strings
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
374
380
.
You do not currently have access to this content.