In this study, a modeling approach has been developed to take multiphysical effects into account in the prediction of the rotordynamic behavior of high speed minirotating machinery with a moderate flow confinement. The temperature increase in the confinement and the flow induced forces resulting from the surrounding fluid have been studied and these models are combined with the structural finite element models for determining the rotordynamic behavior. The structure has been analyzed via finite elements based on Timoshenko beam theory. Flow induced forces are implemented to the structure as added mass-stiffness-damping at each node representing the structure in the fluid confinement. A thermal model based on thermal networks in steady-state has been developed. This model is used to calculate the heat dissipation resulting from air friction and temperature increase in the air gap as a function of rotation speed. At each rotation speed, the temperature in the air gap between the rotor and stationary casing is calculated and air properties, which are used for the calculation of flow induced forces are updated. In this way, thermal and fluid effects in medium gap confinements are coupled with the rotordynamic model and their effects on stability, critical speeds, and vibration response are investigated. The experimental results are reported and compared with the theoretical results in an accompanying paper (Part II).

1.
Epstein
,
A.
, 2004, “
Millimeter-Scale, Micro Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
205
226
.
2.
Lin
,
R. M.
, and
Wang
,
W. J.
, 2006, “
Structural Dynamics of Microsystems-Current State of Research and Future Directions
,”
Mech. Syst. Signal Process.
0888-3270,
20
, pp.
1015
1043
.
3.
Frechette
,
L. G.
,
Jacobson
,
S.
,
Breuer
,
K.
,
Ehrich
,
F.
,
Ghodssi
,
R.
,
Khanna
,
R.
,
Wong
,
C.
,
Zhang
,
X.
,
Schmidt
,
M. A.
, and
Epstein
,
A.
, 2005, “
High-Speed Microfabricated Silicon Turbomachinery and Fluid Film Bearings
,”
J. Microelectromech. Syst.
1057-7157,
14
(
1
), pp.
141
152
.
4.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Verplaetsen
,
F.
, 2004, “
A Microturbine for Electric Power Generation
,”
Sens. Actuators, A
0924-4247,
113
, pp.
86
93
.
5.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Verplaetsen
,
F.
, 2003, “
Development of an Axial Microturbine for a Portable Gas Turbine Generator
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
S190
S195
.
6.
Isomura
,
K.
, and
Tanaka
,
S.
, 2004, “
Development of Micromachine Gas Turbine for Portable Power Generation
,”
JSME Int. J., Ser. B
1340-8054,
47
(
3
), pp.
459
464
.
7.
Sung
,
T.
,
Han
,
S.
,
Lee
,
J.
, and
Jeong
,
N.
, 2002, “
Designs and Analyses of Flywheel Energy Storage Systems Using High-TC Superconductor Bearings
,”
Cryogenics
0011-2275,
42
, pp.
357
362
.
8.
Lee
,
E.
, 2003, “
A Micro HTS Renewable Energy/Attitude Control System for Micro/Nano Satellites
,”
IEEE Trans. Appl. Supercond.
1051-8223,
3
(
2
), pp.
2263
2266
.
9.
Zwyssig
,
C.
, and
Kolar
,
J.
, 2006, “
Design Considerations and Experimental Results of a 100 W, 500 000 RPM Electrical Generator
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
S297
S302
.
10.
Zwyssig
,
C.
,
Kolar
,
J.
,
Thaler
,
W.
, and
Vohrer
,
M.
, 2005, “
Design of a 100 W, 500000 RPM Permanent-Magnet Generator for Mesoscale Gas Turbines
,”
IEEE IAS 2005
, pp.
253
260
.
11.
Zwyssig
,
C.
,
Kolar
,
J.
, and
Round
,
S.
, 2006, “
Analytical and Experimental Investigation of a Low Torque, Ultra-High Speed Drive System
,”
IEEE IAS 2006
, pp.
1507
1513
.
12.
Ehrich
,
F. F.
, and
Jacobson
,
S. A.
, 2003, “
Development of High-Speed Gas Bearings for High-Power Density Microdevices
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
141
148
.
13.
Liu
,
L. X.
,
Epstein
,
A. H.
,
Teo
,
C. J.
, and
Spakovszky
,
Z. S.
, 2005, “
Hydrostatic Gas Journal Bearings for Micro-Turbomachinery
,”
ASME J. Vib. Acoust.
,
127
, pp.
157
164
.
14.
Peirs
,
J.
,
Vleugels
,
P.
,
Waumans
,
T.
,
Verlinden
,
M.
, and
Reynaerts
,
D.
, 2004, “
Development of High-Speed Bearings for Micro Gas Turbines
,”
Micromechanics Europe Workshop
, pp.
313
316
.
15.
Vleugels
,
P.
,
Waumans
,
T.
, and
Peirs
,
J.
, 2006, “
High-Speed Bearings for Micro Gas Turbines: Stability Analysis of Foil Bearings
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
S282
S289
.
16.
Antunes
,
J.
,
Axisa
,
F.
, and
Grunenwald
,
T.
, 1996, “
Dynamics of Rotors Immersed in Eccentric Annular Flow. Part 1: Theory
,”
J. Fluids Struct.
0889-9746,
10
, pp.
893
918
.
17.
Grunenwald
,
T.
,
Axisa
,
F.
,
Bennett
,
G.
, and
Antunes
,
J.
, 1996, “
Dynamics of rotors immersed in eccentric annular flow. Part 2: Experiments
,”
J. Fluids Struct.
0889-9746,
10
, pp.
919
944
.
18.
Genta
,
G.
, 2005,
Dynamics of Rotating Systems
,
Springer
,
New York
.
19.
Archer
,
J. S.
, 1965, “
Consistent Matrix Formulations for Structural Analysis Using Finite Element Techniques
,”
AIAA J.
0001-1452,
3
(
10
), pp.
1910
1918
.
20.
Genta
,
G.
, 1985, “
Consistent Matrices in Rotor Dynamics
,”
Meccanica
0025-6455,
20
, pp.
235
248
.
21.
San Andrés
,
L.
, 2008, “
Modern Lubrication Theory—Lecture Notes
,” Texas A and M University.
22.
Saari
,
J.
, 1996, “
Friction Losses and Heat Transfer in High-Speed Electrical Machines: A Literature Review
,” Technical Report No. 50, Helsinki University of Technology, Laboratory of Electromechanics, Finland.
23.
Theodorsen
,
T.
, and
Regier
,
A.
, 1944, “
Experiments of Drag of Revolving Disks, Cylinders, and Streamline Rods at High Speeds
,” Technical Report No. 793, National Advisory Committee for Aeronautics (NACA).
24.
Bilgen
,
E.
, and
Boulos
,
R.
, 1973, “
Functional Dependence of Torque Coefficient of Coaxial Cylinders on Gap Width and Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
95
(
1
), pp.
122
126
.
25.
Saari
,
J.
, 1998, “
Thermal Analysis of High-Speed Induction Machines
,” Ph.D. thesis, Helsinki University of Technology, Helsinki, Finland.
26.
Perez
,
I.
, and
Kassakian
,
J.
, 1979, “
A Stationary Thermal Model for Smooth Air-Gap Rotating Electric Machines
,”
Electric Machines and Electromechanics
,
3
, pp.
285
303
.
27.
Mellor
,
P. H.
,
Roberts
,
D.
, and
Turner
,
D.
, 1991, “
Lumped Parameter Thermal Model for Electrical Machines of TEFC Design
,”
IEE Proceedings-B
, pp.
205
218
.
28.
Kylander
,
G.
, 1995, “
Thermal Modeling of Small Cage Induction Motors
,” Technical Report No. 265, Chalmers University of Technology, Gothenburg, Sweden.
29.
Becker
,
K.
, and
Kaye
,
J.
, 1962, “
Measurements of Diabatic Flow in an Annulus With an Inner Rotating Cylinder
,”
ASME J. Heat Transfer
0022-1481,
84
(
2
), pp.
97
105
.
30.
Saari
,
J.
, 1995, “
Thermal Modeling of High-Speed Induction Machines
,”
Electrical Engineering Series
,
Acta Polytechnica Scandinavica
,
Helsinki, Finland
.
31.
Grunenwald
,
T.
, 1994, “
Comportement vibratoires d’arbres de machines tournantes dans un espace annulaire de fluide de confinement de modéré
,” Ph.D. thesis, Paris University.
You do not currently have access to this content.