This paper presents a solution to the stabilization problem of large amplitude vibration of the anisotropic composite laminated plates when the Kirchhoff theorem is used to model geometric equations of strain. Because of the large displacement in the normal direction to the plate, the plate displacements in in-plane directions are not dispensable, and strains and governing equations for transverse vibration and in-plane motions are nonlinear; therefore, the nonlinear boundary control method is proposed to be utilized to stabilize the plate vibration. The boundary control forces consist of feedback of the velocities and slope at the boundary of the plate. By applying the proposed method, it is possible to asymptotically stabilize large amplitude vibration of anisotropic composite plates with simply supported boundary conditions without resorting to truncation of the model and without the use of in-domain measuring and actuating devices.

1.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
,
Taylor & Francis
,
London
.
2.
Vinson
,
J. R.
, 1999,
The Behavior of Sandwich Structures of Isotropic and Composite Materials
,
Technomic
,
Lancaster
.
3.
Pietrzakowski
,
M.
, 2008, “
Piezoelectric Control of Composite Plate Vibration: Effect of Electric Potential Distribution
,”
Comput. Struct.
0045-7949,
86
, pp.
948
954
.
4.
Luo
,
Y.
,
Xie
,
Sh.
, and
Zhang
,
X.
, 2008, “
Vibration Control of Honeycomb Sandwich Panel Using Multi-Layer Piezoelectric Actuator
,”
Comput. Struct.
0045-7949,
86
, pp.
744
757
.
5.
Zhang
,
H. Y.
, and
Shen
,
Y. P.
, 2007, “
Vibration Suppression of Laminated Plates With 1–3 Piezoelectric Fiber-Reinforced Composite Layers Equipped With Interdigitated Electrodes
,”
Comput. Struct.
0045-7949,
79
, pp.
220
228
.
6.
Birman
,
V.
, 1993, “
Active Control of Composite Plates Using Piezoelectric Stiffeners
,”
Int. J. Mech. Sci.
0020-7403,
35
, pp.
387
396
.
7.
Heidary
,
F.
, and
Eslami
,
M.
, 2006, “
Piezo-Control of Forced Vibrations of a Thermo-Elastic Composite Plate
,”
Compos. Struct.
0263-8223,
75
, pp.
79
87
.
8.
Moita
,
J. S.
,
Martins
,
P. J.
,
Mota Soares
,
C. M.
, and
Mota Soares
,
C. A.
, 2008, “
Optimal Dynamic Control of Laminated Adaptive Structures Using a Higher Order Model and a Genetic Algorithm
,”
Comput. Struct.
0045-7949,
86
, pp.
198
206
.
9.
Li
,
Y. Y.
,
Cheng
,
L.
, and
Li
,
P.
, 2003, “
Modeling and Vibration Control of a Plate Coupled With Piezoelectric Material
,”
Compos. Struct.
0263-8223,
62
, pp.
155
162
.
10.
Lee
,
S. J.
,
Reddy
,
J. N.
, and
Rostam-Abadi
,
F.
, 2004, “
Transient Analysis of Laminated Composite Plates With Embedded Smart-Material Layers
,”
Finite Elem. Anal. Design
0168-874X,
40
, pp.
463
483
.
11.
Yan
,
Y. J.
, and
Yam
,
L. H.
, 2003, “
Mechanical Interaction Issues in Piezoelectric Composite Structures
,”
Compos. Struct.
0263-8223,
59
, pp.
61
65
.
12.
Lee
,
Y. Y.
, and
Guo
,
X.
, 2007, “
Non-Linear Vibration Suppression of a Composite Panel Subject to Random Acoustic Excitation Using Piezoelectric Actuators
,”
Mech. Syst. Signal Process.
0888-3270,
21
, pp.
1153
1173
.
13.
John
,
S.
, and
Hariri
,
M.
, 2008, “
Effect of Shape Memory Alloy Actuation on the Dynamic Response of Polymeric Composite Plates
,”
Composites, Part A
1359-835X,
39
, pp.
769
776
.
14.
Victor
,
B.
, 2008, “
Shape Memory Elastic Foundation and Supports for Passive Vibration Control of Composite Plates
,”
Int. J. Solids Struct.
0020-7683,
45
, pp.
320
335
.
15.
Canbolat
,
H.
,
Dawson
,
D.
,
Rahn
,
C.
, and
Vedagarbha
,
P.
, 1998, “
Boundary of Cantilevered Flexible Beam With Point Mass Dynamics at the Free End
,”
Mechatronics
0957-4158,
8
, pp.
163
186
.
16.
Chrysafinos
,
K.
,
Gunzburger
,
M. D.
, and
Hou
,
L. S.
, 2006, “
Semidiscrete Approximations of Optimal Robin Boundary Control Problems Constrained by Semilinear Parabolic PDE
,”
J. Math. Anal. Appl.
0022-247X,
323
(
2
), pp.
891
912
.
17.
Balas
,
M. J.
, 1978, “
Active Control of Flexible System
,”
J. Optim. Theory Appl.
0022-3239,
25
(
3
), pp.
415
436
.
18.
Meirovitch
,
L.
, and
Baruh
,
H.
, 1982, “
Control of Self-Adjoint Distributed-Parameter Systems
,”
J. Guid. Control Dyn.
0731-5090,
5
(
1
), pp.
60
66
.
19.
Zhang
,
F.
,
Dawson
,
D. M.
,
Nagarkatti
,
S. P.
, and
Rahn
,
C. D.
, 2000, “
Boundary Control for a General Class of Nonlinear String Actuator Systems
,”
J. Sound Vib.
0022-460X,
229
(
1
), pp.
113
132
.
20.
Fung
,
R. F.
,
Wu
,
J. W.
, and
Lu
,
P. Y.
, 2002, “
Adaptive Boundary Control of an Axially Moving String System
,”
ASME J. Vibr. Acoust.
0739-3717,
124
, pp.
435
440
.
21.
Fung
,
R. F.
,
Chou
,
J. H.
, and
Kuo
,
Y. L.
, 2002, “
Optimal Boundary Control of an Axially Moving Material System
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
55
61
.
22.
Li
,
Y.
,
Aron
,
D.
, and
Rahn
,
C. D.
, 2002, “
Adaptive Vibration Isolation for Axially Moving Strings: Theory and Experiment
,”
Automatica
0005-1098,
38
(
3
), pp.
379
390
.
23.
Yang
,
K. J.
, and
Hong
,
K. S.
, 2002, “
Robust Boundary Control of an Axially Moving Steel Strip
,”
Proceedings of the 15th Triennial World Congress of the International Federation of Automatic Control, IFAC, T-Tu-E19-2
, Barcelona, Spain, pp.
21
26
.
24.
Qu
,
Z.
, 2002, “
An Iterative Learning Algorithm for Boundary Control of a Stretched Moving String
,”
Automatica
0005-1098,
38
(
5
), pp.
821
827
.
25.
Chao
,
P. C. P.
, and
Lai
,
C. L.
, 2003, “
Boundary Control of an Axially Moving String Via Fuzzy Sliding Mode Control and Fuzzy Neural Network Methods
,”
J. Sound Vib.
0022-460X,
262
, pp.
795
813
.
26.
Yang
,
K. J.
,
Hong
,
K. S.
, and
Matsuno
,
F.
, 2004, “
Robust Adaptive Boundary Control of an Axially Moving String Under a Spatiotemporally Varying Tension
,”
J. Sound Vib.
0022-460X,
273
, pp.
1007
1029
.
27.
Li
,
T.
, and
Hou
,
Z.
, 2006, “
Exponential Stabilization of an Axially Moving String With Geometrical Nonlinearity by Linear Boundary Feedback
,”
J. Sound Vib.
0022-460X,
296
, pp.
861
870
.
28.
Sadek
,
I. S.
,
Sloss
,
J. M.
,
Adali
,
S.
, and
Bruch
,
J. C.
, Jr.
, 1997, “
Optimal Boundary Control of the Longitudinal Vibrations of a Rod Using a Maximum Principle
,”
J. Vib. Control
1077-5463,
3
, pp.
235
254
.
29.
Udwadia
,
F. E.
, 2005, “
Boundary Control, Quiet Boundaries, Super Stability and Super Instability
,”
Int. J. Appl. Math Comput. Sci.
0867-857X,
164
, pp.
327
349
.
30.
Fard
,
M. P.
, 2001, “
Exponential Stabilization of a Transversely Vibration Beam Via Boundary Control
,”
J. Sound Vib.
0022-460X,
240
(
4
), pp.
613
622
.
31.
Baz
,
A.
, 1997, “
Boundary Control of Beams Using Active Constrained Layer Damping
,”
ASME J. Vibr. Acoust.
0739-3717,
119
, pp.
166
172
.
32.
Librescu
,
L.
, and
Na
,
S.
, 1998, “
Bending Vibration Control of Cantilevers Via Boundary Moment and Combined Feedback Control Laws
,”
ASME J. Vibr. Acoust.
0739-3717,
4
, pp.
733
746
.
33.
Librescu
,
L.
, and
Na
,
S.
, 1998, “
Boundary Control of Force and Forced Oscillations of Shear Able Thin-Walled Beam Cantilevers
,”
Eur. J. Mech. A/Solids
0997-7538,
17
, pp.
687
700
.
34.
Sloss
,
J. M.
,
Bruch
,
J. C.
, Jr.
,
Sadek
,
I. S.
, and
Adali
,
S.
, 1998, “
Maximum Principle for Optimal Boundary Control of Vibrating Structures With Applications to Beams
,”
Dyn. Control
0925-4668,
8
(
4
), pp.
355
375
.
35.
Yu
,
J. Y.
,
Li
,
S. J.
,
Wang
,
Y. T.
, and
Liang
,
Z. D.
, 1999, “
Optimal Decay Rate of Vibrating Beam Equations Controlled by Combined Boundary Feedback Forces
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
42
(
4
), pp.
354
364
.
36.
Lara
,
A.
,
Bruch
,
J. C.
, Jr.
,
Sloss
,
J. M.
,
Sadek
,
I. S.
, and
Adali
,
S.
, 2000, “
Vibration Damping in Beams Via Piezo Actuation Using Optimal Boundary Control
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
6537
6554
.
37.
Li
,
S.
,
Wang
,
Y. T.
,
Liang
,
Z. D.
,
Yu
,
J. Y.
, and
Zhu
,
G.
, 2001, “
Stabilization of Vibrating Beam With a Tip Mass Controlled by Combined Feedback Forces
,”
J. Math. Anal. Appl.
0022-247X,
256
, pp.
13
38
.
38.
Luo
,
Z.
, 1993, “
Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experimental Results
,”
IEEE Trans. Autom. Control
0018-9286,
38
(
11
), pp.
1610
1622
.
39.
Luo
,
Z.
, and
Guo
,
B.
, 1995, “
Further Theoretical Results on Direct Strain Feedback Control of Flexible Robot Arms
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
40
), pp.
747
751
.
40.
Luo
,
Z.
,
Kitamura
,
N.
, and
Guo
,
B.
, 1995, “
Shear Force Feedback Control of Flexible Robot Arms
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
5
), pp.
760
765
.
41.
Liu
,
K.
, and
Liu
,
Z.
, 2000, “
Boundary Stabilization of a Non Homogeneous Beam With Rotary Inertia at the Tip
,”
J. Comput. Appl. Math.
0377-0427,
114
, pp.
1
10
.
42.
Queroz
,
M. S.
,
Dawson
,
D. M.
, and
Zhang
,
F.
, 1997, “
Boundary Control of a Rotating Flexible Body Beam System
,”
Proceedings of the 1997 IEEE International Conference on Control Applications
, Hartford, CT, pp.
812
817
.
43.
Chentouf
,
B.
, 2004, “
Dynamic Boundary Controls of a Rotating Body Beam System With Time Varying Angular Velocity
,”
J. Appl. Math.
1110-757X,
2004
, pp.
107
126
.
44.
Chentouf
,
B.
, and
Wang
,
J. M.
, 2006, “
Stabilization and Optimal Decay Rate for a Non-Homogeneous Rotating Body-Beam With Dynamic Boundary Controls
,”
J. Math. Anal. Appl.
0022-247X,
318
, pp.
667
691
.
45.
Chentouf
,
B.
, 2006, “
A Simple Approach to Dynamic Stabilization of a Rotating Body-Beam
,”
Appl. Math. Lett.
0893-9659,
19
, pp.
97
107
.
46.
Lagnese
,
J. E.
, 1989,
Boundary Stabilization of Thin Plates
,
SIAM
,
Philadelphia, PA
.
47.
Rao
,
B.
, 1998, “
Stabilization of Elastic Plates With Dynamical Boundary Control
,”
SIAM J. Control Optim.
0363-0129,
36
(
1
), pp.
148
163
.
48.
Liu
,
Y.
,
Jiang
,
W.
, and
Huang
,
F.
, 2005, “
On the Stabilization of Elastic Plates With Dynamical Boundary Control
,”
Appl. Math. Lett.
0893-9659,
18
(
3
), pp.
353
359
.
49.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2008, “
Boundary Control of Vibration of Symmetric Composite Laminated Plate
,”
Proceedings of the 17th IFAC World Congress
, Seoul, Korea.
50.
Rastgoftar
,
H.
,
Eghtesad
,
M.
, and
Khayatian
,
A.
, 2008, “
Boundary Control of Vibration of General Composite Laminated Plate
,”
Proceedings of the 12th IEEE Conference on Intelligent Engineering Systems INES
, Miami, FL.
51.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
, 1964,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
52.
Barbalat
,
I.
, 1959, “
Systemes d’Equations Differentielles d’Oscillations NonLineares
,”
Rev. Math. Pures Appl.
0370-6052,
4
, pp.
267
270
.
53.
Zubov
,
V. L.
, 1964,
Methods of A. M. Lyapunov and Their Application
,
Noordhoff
,
Groningen
, in English.
You do not currently have access to this content.