Oscillatory behavior in a chain of masses connected by springs with continuous but nonmonotonic spring forces can be induced under quasistatic loading. An insight into the birth of this behavior is obtained from a single mass system. A bifurcation study shows the potential for equilibrium jumps between multiple equilibria. As such, the transients occurring under quasistatic loading do not converge to the static loading case. Transients during dynamic loading show sensitivity to the loading parameters.

1.
Balk
,
A. M.
,
Cherkaev
,
A. V.
, and
Slepyan
,
L. I.
, 2001, “
Dynamics of Chains With Non-Monotone Stress-Strain Relations. I. Model and Numerical Experiments
,”
J. Mech. Phys. Solids
0022-5096,
49
(
1
), pp.
131
148
.
2.
Balk
,
A. M.
,
Cherkaev
,
A. V.
, and
Slepyan
,
L. I.
, 2001, “
Dynamics of Chains With Non-Monotone Stress-Strain Relations. II. Nonlinear Waves and Waves of Phase Transition
,”
J. Mech. Phys. Solids
0022-5096,
49
(
1
), pp.
149
171
.
3.
Cherkaev
,
A.
,
Cherkaev
,
E.
, and
Slepyan
,
L.
, 2005, “
Transition Waves in Bistable Structures. I. Delocalization of Damage
,”
J. Mech. Phys. Solids
0022-5096,
53
(
2
), pp.
383
405
.
4.
Slepyan
,
L.
,
Cherkaev
,
A.
, and
Cherkaev
,
E.
, 2005, “
Transition Waves in Bistable Structures. II. Analytical Solution: Wave Speed and Energy Dissipation
,”
J. Mech. Phys. Solids
0022-5096,
53
(
2
), pp.
407
436
.
5.
Cherkaev
,
A.
, and
Zhornitskaya
,
L.
, 2005, “
Protective Structures With Waiting Links and Their Damage Evolution
,”
Multibody Syst. Dyn.
1384-5640,
13
(
1
), pp.
53
67
.
6.
Cherkaev
,
A.
,
Vinogradov
,
V.
, and
Leelavanichkul
,
S.
, 2006, “
The Waves of Damage in Elastic-Plastic Lattices With Waiting Links: Design and Simulation
,”
Mech. Mater.
0167-6636,
38
(
8–10
), pp.
748
756
.
7.
Gottwald
,
J. A.
,
Virgin
,
L. N.
, and
Dowell
,
E. H.
, 1995, “
Routes to Escape From an Energy Well
,”
J. Sound Vib.
0022-460X,
187
(
1
), pp.
133
144
.
8.
Johnson
,
E. R.
, 1980, “
The Effect of Damping on Dynamic Snap-Through
,”
ASME J. Appl. Mech.
0021-8936,
47
(
3
), pp.
601
606
.
9.
Kounadis
,
A. N.
, and
Raftoyiannis
,
J.
, 1990, “
Dynamic Stability-Criteria of Nonlinear Elastic Damped Undamped Systems Under Step Loading
,”
AIAA J.
0001-1452,
28
(
7
), pp.
1217
1223
.
10.
Lock
,
M. H.
, 1966, “
Snapping of a Shallow Sinusoidal Arch Under a Step Pressure Load
,”
AIAA J.
0001-1452,
4
(
7
), pp.
1249
1256
.
11.
Moon
,
F. C.
, and
Holmes
,
P. J.
, 1979, “
Magnetoelastic Strange Attractor
,”
J. Sound Vib.
0022-460X,
65
(
2
), pp.
275
296
.
12.
Holmes
,
P. J.
, and
Moon
,
F. C.
, 1983, “
Strange Attractors and Chaos in Non-Linear Mechanics
,”
ASME J. Appl. Mech.
0021-8936,
50
(
4B
), pp.
1021
1032
.
13.
Moon
,
F. C.
, and
Li
,
G. X.
, 1985, “
Fractal Basin Boundaries and Homoclinic Orbits for Periodic Motion in a 2-Well Potential
,”
Phys. Rev. Lett.
0031-9007,
55
(
14
), pp.
1439
1442
.
14.
Guckenheimer
,
J.
, and
Holmes
,
P. J.
, 1983, “
Nonlinear Oscillations Dynamical Systems and Bifurcation Fields
Springer-Verlag
,
New York
.
15.
Haberman
,
R.
, 1979, “
Slowly Varying Jump and Transition Phenomena Associated With Algebraic Bifurcation Problems
,”
SIAM J. Appl. Math.
0036-1399,
37
, pp.
69
106
.
16.
Lebovitz
,
N. R.
, and
Schaar
,
R. J.
, 1975, “
Exchange of Stabilities in Autonomous Systems
,”
Stud. Appl. Math.
0022-2526,
54
, pp.
229
260
.
17.
Lebovitz
,
N. R.
, and
Schaar
,
R. J.
, 1975, “
Exchange of Stabilities in Autonomous Systems II: Vertical Bifurcation
,”
Stud. Appl. Math.
0022-2526,
56
, pp.
1
50
.
18.
Davies
,
H.
, and
Krishna
,
R.
, 1996, “
Nonstationary Response Near Generic Bifurcations
,”
Nonlinear Dyn.
0924-090X,
10
(
3
), pp.
235
250
.
19.
Raman
,
A.
,
Bajaj
,
A. K.
, and
Davies
,
P.
, 1996, “
On the Slow Transition Across Instabilities in Nonlinear Dissipative Systems
,”
J. Sound Vib.
0022-460X,
192
(
4
), pp.
835
865
.
20.
Raman
,
A.
, and
Bajaj
,
A. K.
, 1998, “
On the Nonstationary Passage Through Bifurcations in Resonantly Forced Hamiltonian Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
33
(
5
), pp.
907
933
.
21.
Marée
,
G. J. M.
, 1996, “
Slow Passage Through a Pitchfork Bifurcation
,”
SIAM J. Appl. Math.
0036-1399,
56
(
3
), pp.
889
918
.
22.
Puglisi
,
G.
, and
Truskinovsky
,
L.
, 2000, “
Mechanics of a Discrete Chain With Bi-Stable Elements
,”
J. Mech. Phys. Solids
0022-5096,
48
(
1
), pp.
1
27
.
23.
Puglisi
,
G.
, and
Truskinovsky
,
L.
, 2002, “
A Mechanism of Transformational Plasticity
,”
Continuum Mech. Thermodyn.
0935-1175,
14
(
5
), pp.
437
457
.
24.
Puglisi
,
G.
, and
Truskinovsky
,
L.
, 2002, “
Rate Independent Hysteresis in a Bi-Stable Chain
,”
J. Mech. Phys. Solids
0022-5096,
50
(
2
), pp.
165
187
.
You do not currently have access to this content.