This paper addresses an issue in energy harvesting that has plagued the potential use of harvesting through the piezoelectric effect at the micro-electro-mechanical systems (MEMS) scale. Effective energy harvesting devices typically consist of a cantilever beam substrate coated with a thin layer of piezoceramic material and fixed with a tip mass tuned to resonant at the dominant frequency of the ambient vibration. The fundamental natural frequency of a beam increases as its length decreases, so that at the MEMS scale the resonance condition occurs orders of magnitude higher than ambient vibration frequencies, rendering the harvester ineffective. Here, we propose a new geometry for MEMS scale cantilever harvesters with low fundamental frequencies. A “zigzag” geometry is proposed, modeled, and solved to show that such a structure would be able to vibrate near resonance at the MEMS scale. An analytical solution is presented and verified against Rayleigh’s method and is validated against a macroscale experiment. The analysis is used to provide design guidelines and parametric studies for constructing an effective MEMS scale energy harvesting device in the frequency range common to low frequency ambient vibrations, removing a current barrier.

1.
Beeby
,
S. P.
,
Tudor
,
M. J.
, and
White
,
N. M.
, 2006, “
Energy Harvesting Vibration Sources for Microsystems Applications
,”
Meas. Sci. Technol.
0957-0233,
17
(
12
), p.
R175
.
2.
Anton
,
S.
, and
Sodano
,
H.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
(
3
), p.
R1
.
3.
Arnold
,
D.
, 2007, “
Review of Microscale Magnetic Power Generation
,”
IEEE Trans. Magn.
0018-9464,
43
(
11
), pp.
3940
3951
.
4.
Cook-Chennault
,
K.
,
Thambi
,
N.
, and
Sastry
,
A.
, 2008, “
Powering MEMS Portable Devices—A Review of Non-Regenerative and Regenerative Power Supply Systems With Special Emphasis on Piezoelectric Energy Harvesting Systems
,”
Smart Mater. Struct.
0964-1726,
17
(
4
), p.
043001
.
5.
Priya
,
S.
, 2007, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
1385-3449,
19
(
1
), pp.
167
184
.
6.
Priya
,
S.
, and
Inman
,
D.
, 2008,
Energy Harvesting Technologies
,
Springer
,
New York
.
7.
Erturk
,
A.
, and
Inman
,
D.
, 2008, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
041002
.
8.
Erturk
,
A.
, and
Inman
,
D.
, 2008, “
Issues in Mathematical Modeling of Piezoelectric Energy Harvesters
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065016
.
9.
Lu
,
F.
,
Lee
,
H.
, and
Lim
,
S.
, 2004, “
Modeling and Analysis of Micro Piezoelectric Power Generators for Micro-Electromechanical-Systems Applications
,”
Smart Mater. Struct.
0964-1726,
13
(
1
), pp.
57
63
.
10.
Jeon
,
Y. B.
,
Sood
,
R.
,
Jeong
,
J. -h.
, and
Kim
,
S. -G.
, 2005, “
MEMS Power Generator With Transverse Mode Thin Film PZT
,”
Sens. Actuators, A
0924-4247,
122
(
1
), pp.
16
22
.
11.
Kuehne
,
I.
,
Marinkovic
,
D.
,
Eckstein
,
G.
, and
Seidel
,
H.
, 2008, “
A New Approach for MEMS Power Generation Based on a Piezoelectric Diaphragm
,”
Sens. Actuators, A
0924-4247,
142
(
1
), pp.
292
297
.
12.
Zheng
,
Q.
, and
Xu
,
Y.
, 2008, “
Asymmetric Air-Spaced Cantilevers for Vibration Energy Harvesting
,”
Smart Mater. Struct.
0964-1726,
17
, p.
055009
.
13.
Fang
,
H.
,
Liu
,
J.
,
Xu
,
Z.
,
Dong
,
L.
,
Wang
,
L.
,
Chen
,
D.
,
Cai
,
B.
, and
Liu
,
Y.
, 2006, “
Fabrication and Performance of MEMS-Based Piezoelectric Power Generator for Vibration Energy Harvesting
,”
Microelectron. J.
0026-2692,
37
(
11
), pp.
1280
1284
.
14.
Shen
,
D.
,
Park
,
J.
,
Ajitsaria
,
J.
,
Choe
,
S.
,
Wikle
,
H.
, and
Kim
,
D.
, 2008, “
The Design, Fabrication and Evaluation of a MEMS PZT Cantilever With an Integrated Si Proof Mass for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
0960-1317,
18
(
5
), p.
055017
.
15.
Liu
,
J. -Q.
,
Fang
,
H. -B.
,
Xu
,
Z. -Y.
,
Mao
,
X. -H.
,
Shen
,
X. -C.
,
Chen
,
D.
,
Liao
,
H.
, and
Cai
,
B. C.
, 2008, “
A MEMS-Based Piezoelectric Power Generator Array for Vibration Energy Harvesting
,”
Microelectron. J.
0026-2692,
39
(
5
), pp.
802
806
.
16.
Reilly
,
E.
, and
Wright
,
P.
, 2009, “
Modeling, Fabrication and Stress Compensation of an Epitaxial Thin Film Piezoelectric Microscale Energy Scavenging Device
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
095014
.
17.
Shen
,
D.
,
Park
,
J.
,
Noh
,
J.
,
Choe
,
S.
,
Kim
,
S.
,
Wikle
,
H.
, and
Kim
,
D.
, 2009, “
Micromachined PZT Cantilever Based on SOI Structure for Low Frequency Vibration Energy Harvesting
,”
Sens. Actuators, A
0924-4247,
154
(
1
), pp.
103
108
.
18.
Lee
,
B.
,
Lin
,
S.
,
Wu
,
W.
,
Wang
,
X.
,
Chang
,
P.
, and
Lee
,
C.
, 2009, “
Piezoelectric MEMS Generators Fabricated With an Aerosol Deposition PZT Thin Film
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
065014
.
19.
Choi
,
W.
,
Jeon
,
Y.
,
Jeong
,
J.
,
Sood
,
R.
, and
Kim
,
S.
, 2006, “
Energy Harvesting MEMS Device Based on Thin Film Piezoelectric Cantilevers
,”
J. Electroceram.
1385-3449,
17
(
2–4
), pp.
543
548
.
20.
Karami
,
M. A.
,
Yardimoglu
,
B.
, and
Inman
,
D. J.
, 2010, “
Coupled Out of Plane Vibrations of Spiral Beams for Micro-Scale Applications
,”
J. Sound Vib.
0022-460X,
329
(
26
), pp.
5584
5599
.
21.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
, 2010, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vibr. Acoust.
0739-3717,
132
(
2
), p.
021009
.
22.
Rao
,
S. S.
, 2007,
Vibration of Continuous Systems
,
Wiley
,
New York
.
23.
Booker
,
J.
, and
Kitipornchai
,
S.
, 1971, “
Torsion of Multilayered Rectangular Section
,”
J. Engrg. Mech. Div.
0044-7951,
97
(
5
), pp.
1451
1468
.
24.
Blevins
,
R.
, 1979, “
Straight Beams
,”
Formulas for Natural Frequency and Mode Shape
,
Krieger
,
Malabar, FL
.
25.
Inman
,
D. J.
, 2001, “
Distributed-Parameter Systems
,”
Engineering Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Meirovitch
,
L.
, 1967, “
Analytical Methods in Vibration
,”
Macmillan
,
London
.
27.
Shames
,
I. H.
, and
Dym
,
C. L.
, 2003,
Energy and Finite Element Methods in Structural Mechanics
,
Taylor & Francis
,
New York
.
28.
Ohashi
,
M.
,
Nakamura
,
K.
,
Hirao
,
K.
,
Toriyama
,
M.
, and
Kanzaki
,
S.
, 1997, “
Factors Affecting Mechanical Properties of Silicon Oxynitride Ceramics
,”
Ceram. Int.
0272-8842,
23
(
1
), pp.
27
37
.
You do not currently have access to this content.