This paper proposes a novel piezoelectric energy harvesting device driven by aeroelastic flutter vibrations of a simple pin connected flap and beam. The system is subject to a modal convergence flutter response above a critical wind speed and then oscillates in a limit cycle at higher wind speeds. A linearized analytical model of the device is derived to include the effects of the three-way coupling between the structural, unsteady aerodynamic, and electrical aspects of the system. A stability analysis of this model is presented to determine the frequency and wind speed at the onset of the flutter instability, which dictates the cut-in conditions for energy harvesting. In order to estimate the electrical output of the energy harvester, the amplitude and frequency of the flutter limit cycle are also investigated. The limit cycle behavior is simulated in the time domain with a semi-empirical nonlinear model that accounts for the effects of the dynamic stall over the flap at large deflections. Wind tunnel test results are presented to determine the empirical aerodynamic model coefficients and to characterize the power output and flutter frequency of the energy harvester as functions of incident wind speed.

1.
Anton
,
S. R.
, and
Sodano
,
H. A.
, 2007, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
0964-1726,
16
, pp.
R1
R21
.
2.
Robbins
,
W. P.
,
Morris
,
D.
,
Marusic
,
I.
, and
Novak
,
T. O.
, 2006, “
Wind-Generated Electricity Using Flexible Piezoelectric Materials
,”
Proceedings of IMECE 2006
, Vol.
71
, pp.
581
590
.
3.
Allen
,
J. J.
, and
Smits
,
A. J.
, 2001, “
Energy Harvesting Eel
,”
J. Fluids Struct.
0889-9746,
15
(
3–4
), pp.
629
640
.
4.
Taylor
,
G. W.
,
Burns
,
J. R.
,
Kammann
,
S. M.
,
Powers
W. B.
, and
Welsh
T. R.
, 2001, “
The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator
,”
IEEE J. Ocean. Eng.
0364-9059,
26
(
4
), pp.
539
547
.
5.
Pobering
,
S.
, and
Schwesinger
,
N.
, 2004, “
A Novel Hydropower Harvesting Device
,”
Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems
, Banff, AL, pp.
480
485
.
6.
Priya
,
S.
,
Chen
,
C. T.
,
Fye
,
D.
, and
Zahnd
,
J.
, 2005, “
Piezoelectric Windmill: A Novel Solution to Remote Sensing
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
44
(
3
), pp.
L104
L107
.
7.
Elvin
,
N. G.
, and
Elvin
,
A. E.
, 2009, “
The Flutter Response of a Piezoelectrically Damped Cantilever Pipe
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
2017
2026
.
8.
Blevins
,
R. D.
, 2001,
Flow Induced Vibration
,
Van Nostrand Reinhold Company
,
New York
.
9.
Khalak
,
A.
, and
Williamson
,
C. H. K.
, 1999, “
Motions, Forces, and Mode Transitions in Vortex-Induced Vibrations at Low Mass-Damping
,”
J. Fluids Struct.
0889-9746,
13
(
7–8
), pp.
813
851
.
10.
Dowell
,
E. H.
,
Curtiss
, Jr.,
H. C.
,
Scanlan
,
R. H.
, and
Sisto
,
F.
, 1980,
A Modern Course in Aeroelasticity
,
Sijthoff & Noordhoff, Alphen aan den Rijn
,
The Netherlands
, Chap. 3.
11.
Hodges
,
D. H.
, and
Pierce
,
G. A.
, 2002,
Introduction to Structural Dynamics and Aeroelasticity
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
12.
van Oudheusden
,
B. W.
, 1996, “
Rotational One-Degree-of-Freedom Galloping in the Presence of Viscous and Frictional Damping
,”
J. Fluids Struct.
0889-9746,
10
, pp.
673
689
.
13.
Sheldahl
,
R. E.
, and
Klimas
,
P. C.
, 1981, “
Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines
,” Sandia National Laboratories Report No. SAND80-2114.
14.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
J. Strain
,
40
(
2
), pp.
49
58
.
15.
Peters
,
D. A.
,
Karunamoorthy
,
S.
, and
Cao
,
W. M.
, 1995, “
Finite State Induced Flow Models; Part I; Two Dimensional Thin Airfoil
,”
J. Aircr.
0021-8669,
32
(
2
), pp.
313
322
.
16.
Theodorsen
,
T.
, 1934, “
General Theory of Aerodynamic Instability and the Mechanism of Flutter
,” NACA Report No. 496.
17.
Tran
,
C. T.
, and
Petot
,
D.
, 1981, “
Semi-Empirical Model for the Dynamic Stall of Airfoils in View of Application to the Calculated Responses of a Helicopter in Forward Flight
,”
Vertica
0360-5450,
5
(
1
), pp.
35
53
.
18.
Dat
,
D.
, and
Tran
,
C. T.
, 1983, “
Investigation of the Stall Flutter of an Airfoil With a Semi-Empirical Model of 2-D Flow
,”
Vertica
0360-5450,
7
(
2
), pp.
73
86
.
19.
Peters
,
D. A.
, 1985, “
Toward a Unified Lift Model for Use in Helicopter Rotor Blade Stability Analyses
,”
J. Am. Helicopter Soc.
0002-8711,
30
(
3
), pp.
32
43
.
20.
Wickenheiser
,
A. M.
, and
Garcia
,
E.
, 2008, “
Optimizing of Perching Maneuvers Through Vehicle Morphing
,”
J. Guid. Control Dyn.
0731-5090,
31
(
4
), pp.
815
823
.
21.
Chen
,
W. C.
, 1993, “
A Formulation of Nonlinear Limit Cycle Oscillation Problems in Aircraft Flutter
,” MS thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
McAlister
,
K. W.
,
Pucci
,
S. L.
,
McCroskey
,
W. J.
, and
Carr
,
L. W.
, 1982, “
An Experimental Study of Dynamic Stall on Advanced Airfoil Sections Volume 2: Pressure and Force Data
,”
NASA
Report No. TM-84245.
23.
Baker
,
W. E.
,
Woolam
,
W. E.
, and
Young
,
D.
, 1967, “
Air and Internal Damping of Thin Cantilever Beams
,”
Int. J. Mech. Sci.
0020-7403,
9
, pp.
743
766
.
24.
Juang
,
J. -N.
, and
Horta
,
L. G.
, 1987, “
Effects of Atmosphere on Slewing Control of a Flexible Structure
,”
J. Guid. Control Dyn.
0731-5090,
10
(
4
), pp.
387
392
.
25.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
, 2005, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
52
(
4
), pp.
584
595
.
26.
Strogatz
,
S. H.
, 1994,
Nonlinear Dynamics and Chaos
,
Perseus Books
,
Cambridge, MA
, Chap. 8.
You do not currently have access to this content.