An efficient numerical method based on a rigorous integral formulation is used to calculate precisely the acoustic eigenvalues of complex shaped objects and their associated eigenvectors. These eigenvalues are obtained and later used in acoustic nondestructive evaluation. This study uses the eigenvalues to implement a simple acoustic shape differentiation algorithm that is the key in our direct nondestructive analysis. Stability and convergence of the Galerkin boundary element method used herein are discussed. Finally, some numerical examples are shown.
1.
Gordon
, C.
, Webb
, D. L.
, and Wolpert
, S.
, 1992, “One Cannot Hear the Shape of a Drum
,” Bull., New Ser., Am. Math. Soc.
0273-0979, 27
, pp. 134
–138
.2.
Aronszajn
, N.
, and Weinstein
, A.
, 1941, “Existence, Convergence and Equivalence in the Unified Theory of Eigenvalues of Plates and Membranes
,” Proc. Natl. Acad. Sci. U.S.A.
0027-8424, 27
, pp. 188
–191
.3.
Pierce
, D.
, 1991, Acoustics, An Introduction to Its Physical Principles and Applications
, Acoustical Society of America
, Melville, NY
.4.
Morse
, P. M.
, 1995, Vibration and Sound
, Acoustical Society of America
, Melville, NY
.5.
Beranek
, L. L.
, 1996, Acoustics
, Acoustical Society of America
, Melville, NY
.6.
Babuška
, I.
, and Osborn
, J. E.
, 1991, “Eigenvalue Problems
,” Handbook of Numerical Analysis, Finite Element Methods (Part 1)
, Vol. II
, P. G.
Ciarlet
and J. L.
Lions
, eds., North-Holland
, Amsterdam
.7.
Zienkiewicz
, O. C.
, 1997, “Origins, Milestones and Directions of the Finite Element Method—A Personal View
,” Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol. V
, P. G.
Ciarlet
and J. L.
Lions
, eds., North-Holland
, Amsterdam
.8.
Zienkiewicz
, O. C.
, The Finite Element Method
, 5th ed., McGraw-Hill
, Oxford
.9.
Strang
, G.
, and Fix
, G. J.
, 1973, An Analysis of the Finite Element Method
, Prentice-Hall
, Englewood Cliffs, NJ
.10.
Oden
, J. T.
, and Reddy
, J. N.
, 1976, An Introduction to the Mathematical Theory of Finite Elements
, Wiley
, New York
.11.
Wait
, R.
, and Mitchell
, A. R.
, 1985, Finite Element Analysis and Applications
, Wiley
, Chichester
.12.
Mercier
, B.
, Osborn
, J. E.
, Rappaz
, J.
, and Raviart
, P. A.
, 1981, “Eigenvalue Approximation by Mixed and Hybrid Methods
,” Math. Comput.
0025-5718, 36
, pp. 427
–453
.13.
Raviart
, P. A.
, and Thomas
, J. M.
, 1983, Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles
, Masson
, Paris
.14.
Kolata
, W. G.
, 1978, “Approximation of Variationally Posed Eigenvalue Problems
,” Numer. Math.
0029-599X, 29
, pp. 159
–171
.15.
Brezzi
, F.
, and Fortin
, M.
, 1991, Mixed and Hybrid Finite Elements Methods
, Springer-Verlag
, Berlin, Germany
.16.
Rannacher
, R.
, 1979, “Nonconforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory
,” Numer. Math.
0029-599X, 33
, pp. 23
–42
.17.
Grégoire
, J. P.
, Nédélec
, J. -C.
, and Planchard
, J.
, 1975, “A Method for Computing Eigenfrequencies of an Acoustic Resonator
,” Lect. Notes Math.
0075-8434, 503
, pp. 343
–353
.18.
Grégoire
, J. P.
, Nédélec
, J. -C.
, and Planchard
, J.
, 1976, “A Method of Finding the Eigenvalues and Eigenfunctions of Self-Adjoint Operators
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 8
, pp. 201
–214
.19.
Bernardi
, C.
, and Maday
, Y.
, 1997, “Spectral Methods
,” Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol. V
, P. G.
Ciarlet
and J. L.
Lions
, eds., North-Holland
, Amsterdam
.20.
Gottlieb
, D.
, and Orszag
, S. A.
, 1977, Numerical Analysis of Spectral Methods, Theory and Applications
, SIAM
, Philadelphia
.21.
Vandeven
, H.
, 1990, “On the Eigenvalues of Second-Order Spectral Differentiation Operators
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 80
, pp. 313
–318
.22.
Forsythe
, G. E.
, and Wasow
, R.
, 1960, Finite Difference Methods for Partial Differential Equations
, Wiley
, New York
.23.
Banerjee
, P. K.
, Ahmad
, S.
, and Wang
, H. C.
, 1988, “A New BEM Formulation for the Acoustic Eigenfrequencies Analysis
,” Int. J. Numer. Methods Eng.
0029-5981, 26
, pp. 1299
–1309
.24.
Coyette
, J. P.
, and Fyfe
, K. R.
, 1990, “An Improved Formulation for Acoustic Eigenmode Extraction From Boundary Element Models
,” ASME J. Vibr. Acoust.
0739-3717, 112
, pp. 392
–398
.25.
Ali
, A.
, Rajakumar
, C.
, and Yunus
, S. M.
, 1991, “On the Formulation of the Acoustic Boundary Element Eigenvalue Problems
,” Int. J. Numer. Methods Eng.
0029-5981, 31
, pp. 1271
–1282
.26.
Kirkup
, S. M.
, and Amini
, S.
, 1993, “Solution of the Helmholtz Eigenvalue Problem via the Boundary Element Method
,” Int. J. Numer. Methods Eng.
0029-5981, 36
, pp. 321
–330
.27.
Chen
, J. T.
, Liu
, L. W.
, and Hong
, H. -K.
, 2003, “Spurious and True Eigensolutions of Helmholtz BIEs and BEMs for a Multiply Connected Problem
,” Proc. R. Soc. London
0370-1662, 459
, pp. 1891
–1924
.28.
Kuo
, S. R.
, Chen
, J. T.
, and Huang
, C. X.
, 2000, “Analytical Study and Numerical Experiments for True and Spurious Eigensolutions of a Circular Cavity Using the Real Part Dual BEM
,” Int. J. Numer. Methods Eng.
0029-5981, 48
(9
), pp. 1401
–1422
.29.
Alves
, C. J. S.
, and Antunes
, P. R. S.
, 2005, “The Method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes
,” Comput., Mater., Continua
1546-2218, 2
(4
), pp. 251
–265
.30.
Barnett
, A. H.
, 2009, “Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429, 47
(3
), pp. 1952
–1970
.31.
Durán
, M.
, Nédélec
, J. -C.
, and Ossandón
, S.
, 2009, “An Efficient Galerkin BEM to Compute High Acoustic Eigenfrequencies
,” ASME J. Vibr. Acoust.
0739-3717, 131
, p. 031001
.32.
Nédélec
, J. -C.
, 2001, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
, Springer-Verlag
, Berlin
.33.
Kellog
, O. D.
, 1929, Foundations of Potential Theory
, Springer
, Berlin
.34.
Mikhlin
, S. G.
, 1957, Integral Equations
, Pergamon
, Oxford
.35.
Ciarlet
, P. G.
, 1978, The Finite Element Method for Elliptic Problems
, North-Holland
, Amsterdam
.36.
Conca
, C.
, Durán
, M.
, and Rappaz
, J.
, 1998, “Rate of Convergence Estimates for the Spectral Approximation of a Generalized Eigenvalue Problem
,” Numer. Math.
0029-599X, 79
, pp. 349
–369
.37.
Khabou
, M. A.
, Hermi
, L.
, and Rhouma
, M. B. H.
, 2007, “Shape Recognition Using Eigenvalues of the Dirichlet Laplacian
,” Pattern Recognit.
, 40
, pp. 141
–153
.38.
Reuter
, M.
, Wolter
, F. -E.
, and Peinecke
, N.
, 2006, “Laplace–Beltrami Spectra as ‘Shape-DNA’ of Surfaces and Solids
,” Comput.-Aided Des.
0010-4485, 38
, pp. 342
–366
.39.
Saito
, N.
, 2008, “Data Analysis and Representation on a General Domain Using Eigenfunctions of Laplacian
,” Appl. Comput. Harmon. Anal.
1063-5203, 25
, pp. 68
–97
.40.
Abramowitz
, M.
, and Stegun
, I. A.
, 1970, Handbook of Mathematical Functions
, Dover
, New York
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.