An efficient numerical method based on a rigorous integral formulation is used to calculate precisely the acoustic eigenvalues of complex shaped objects and their associated eigenvectors. These eigenvalues are obtained and later used in acoustic nondestructive evaluation. This study uses the eigenvalues to implement a simple acoustic shape differentiation algorithm that is the key in our direct nondestructive analysis. Stability and convergence of the Galerkin boundary element method used herein are discussed. Finally, some numerical examples are shown.

1.
Gordon
,
C.
,
Webb
,
D. L.
, and
Wolpert
,
S.
, 1992, “
One Cannot Hear the Shape of a Drum
,”
Bull., New Ser., Am. Math. Soc.
0273-0979,
27
, pp.
134
138
.
2.
Aronszajn
,
N.
, and
Weinstein
,
A.
, 1941, “
Existence, Convergence and Equivalence in the Unified Theory of Eigenvalues of Plates and Membranes
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
27
, pp.
188
191
.
3.
Pierce
,
D.
, 1991,
Acoustics, An Introduction to Its Physical Principles and Applications
,
Acoustical Society of America
,
Melville, NY
.
4.
Morse
,
P. M.
, 1995,
Vibration and Sound
,
Acoustical Society of America
,
Melville, NY
.
5.
Beranek
,
L. L.
, 1996,
Acoustics
,
Acoustical Society of America
,
Melville, NY
.
6.
Babuška
,
I.
, and
Osborn
,
J. E.
, 1991, “
Eigenvalue Problems
,”
Handbook of Numerical Analysis, Finite Element Methods (Part 1)
, Vol.
II
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
7.
Zienkiewicz
,
O. C.
, 1997, “
Origins, Milestones and Directions of the Finite Element Method—A Personal View
,”
Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol.
V
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
8.
Zienkiewicz
,
O. C.
,
The Finite Element Method
, 5th ed.,
McGraw-Hill
,
Oxford
.
9.
Strang
,
G.
, and
Fix
,
G. J.
, 1973,
An Analysis of the Finite Element Method
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Oden
,
J. T.
, and
Reddy
,
J. N.
, 1976,
An Introduction to the Mathematical Theory of Finite Elements
,
Wiley
,
New York
.
11.
Wait
,
R.
, and
Mitchell
,
A. R.
, 1985,
Finite Element Analysis and Applications
,
Wiley
,
Chichester
.
12.
Mercier
,
B.
,
Osborn
,
J. E.
,
Rappaz
,
J.
, and
Raviart
,
P. A.
, 1981, “
Eigenvalue Approximation by Mixed and Hybrid Methods
,”
Math. Comput.
0025-5718,
36
, pp.
427
453
.
13.
Raviart
,
P. A.
, and
Thomas
,
J. M.
, 1983,
Introduction à l’Analyse Numérique des Équations aux Dérivées Partielles
,
Masson
,
Paris
.
14.
Kolata
,
W. G.
, 1978, “
Approximation of Variationally Posed Eigenvalue Problems
,”
Numer. Math.
0029-599X,
29
, pp.
159
171
.
15.
Brezzi
,
F.
, and
Fortin
,
M.
, 1991,
Mixed and Hybrid Finite Elements Methods
,
Springer-Verlag
,
Berlin, Germany
.
16.
Rannacher
,
R.
, 1979, “
Nonconforming Finite Element Methods for Eigenvalue Problems in Linear Plate Theory
,”
Numer. Math.
0029-599X,
33
, pp.
23
42
.
17.
Grégoire
,
J. P.
,
Nédélec
,
J. -C.
, and
Planchard
,
J.
, 1975, “
A Method for Computing Eigenfrequencies of an Acoustic Resonator
,”
Lect. Notes Math.
0075-8434,
503
, pp.
343
353
.
18.
Grégoire
,
J. P.
,
Nédélec
,
J. -C.
, and
Planchard
,
J.
, 1976, “
A Method of Finding the Eigenvalues and Eigenfunctions of Self-Adjoint Operators
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
8
, pp.
201
214
.
19.
Bernardi
,
C.
, and
Maday
,
Y.
, 1997, “
Spectral Methods
,”
Handbook of Numerical Analysis: Techniques of Scientific Computing (Part 2)
, Vol.
V
,
P. G.
Ciarlet
and
J. L.
Lions
, eds.,
North-Holland
,
Amsterdam
.
20.
Gottlieb
,
D.
, and
Orszag
,
S. A.
, 1977,
Numerical Analysis of Spectral Methods, Theory and Applications
,
SIAM
,
Philadelphia
.
21.
Vandeven
,
H.
, 1990, “
On the Eigenvalues of Second-Order Spectral Differentiation Operators
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
80
, pp.
313
318
.
22.
Forsythe
,
G. E.
, and
Wasow
,
R.
, 1960,
Finite Difference Methods for Partial Differential Equations
,
Wiley
,
New York
.
23.
Banerjee
,
P. K.
,
Ahmad
,
S.
, and
Wang
,
H. C.
, 1988, “
A New BEM Formulation for the Acoustic Eigenfrequencies Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
1299
1309
.
24.
Coyette
,
J. P.
, and
Fyfe
,
K. R.
, 1990, “
An Improved Formulation for Acoustic Eigenmode Extraction From Boundary Element Models
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
392
398
.
25.
Ali
,
A.
,
Rajakumar
,
C.
, and
Yunus
,
S. M.
, 1991, “
On the Formulation of the Acoustic Boundary Element Eigenvalue Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
1271
1282
.
26.
Kirkup
,
S. M.
, and
Amini
,
S.
, 1993, “
Solution of the Helmholtz Eigenvalue Problem via the Boundary Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
321
330
.
27.
Chen
,
J. T.
,
Liu
,
L. W.
, and
Hong
,
H. -K.
, 2003, “
Spurious and True Eigensolutions of Helmholtz BIEs and BEMs for a Multiply Connected Problem
,”
Proc. R. Soc. London
0370-1662,
459
, pp.
1891
1924
.
28.
Kuo
,
S. R.
,
Chen
,
J. T.
, and
Huang
,
C. X.
, 2000, “
Analytical Study and Numerical Experiments for True and Spurious Eigensolutions of a Circular Cavity Using the Real Part Dual BEM
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
(
9
), pp.
1401
1422
.
29.
Alves
,
C. J. S.
, and
Antunes
,
P. R. S.
, 2005, “
The Method of Fundamental Solutions Applied to the Calculation of Eigenfrequencies and Eigenmodes of 2D Simply Connected Shapes
,”
Comput., Mater., Continua
1546-2218,
2
(
4
), pp.
251
265
.
30.
Barnett
,
A. H.
, 2009, “
Perturbative Analysis of the Method of Particular Solutions for Improved Inclusion of High-Lying Dirichlet Eigenvalues
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
47
(
3
), pp.
1952
1970
.
31.
Durán
,
M.
,
Nédélec
,
J. -C.
, and
Ossandón
,
S.
, 2009, “
An Efficient Galerkin BEM to Compute High Acoustic Eigenfrequencies
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
031001
.
32.
Nédélec
,
J. -C.
, 2001,
Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems
,
Springer-Verlag
,
Berlin
.
33.
Kellog
,
O. D.
, 1929,
Foundations of Potential Theory
,
Springer
,
Berlin
.
34.
Mikhlin
,
S. G.
, 1957,
Integral Equations
,
Pergamon
,
Oxford
.
35.
Ciarlet
,
P. G.
, 1978,
The Finite Element Method for Elliptic Problems
,
North-Holland
,
Amsterdam
.
36.
Conca
,
C.
,
Durán
,
M.
, and
Rappaz
,
J.
, 1998, “
Rate of Convergence Estimates for the Spectral Approximation of a Generalized Eigenvalue Problem
,”
Numer. Math.
0029-599X,
79
, pp.
349
369
.
37.
Khabou
,
M. A.
,
Hermi
,
L.
, and
Rhouma
,
M. B. H.
, 2007, “
Shape Recognition Using Eigenvalues of the Dirichlet Laplacian
,”
Pattern Recognit.
,
40
, pp.
141
153
.
38.
Reuter
,
M.
,
Wolter
,
F. -E.
, and
Peinecke
,
N.
, 2006, “
Laplace–Beltrami Spectra as ‘Shape-DNA’ of Surfaces and Solids
,”
Comput.-Aided Des.
0010-4485,
38
, pp.
342
366
.
39.
Saito
,
N.
, 2008, “
Data Analysis and Representation on a General Domain Using Eigenfunctions of Laplacian
,”
Appl. Comput. Harmon. Anal.
1063-5203,
25
, pp.
68
97
.
40.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1970,
Handbook of Mathematical Functions
,
Dover
,
New York
.
You do not currently have access to this content.