This paper proposes a new feature extraction method based on Independent Component Analysis (ICA) and reconstructed phase space. The ICA-based phase space feature unifies the system dynamics embedded in vibration signal and higher-order statistics expressed in phase spectrum and hence, is effective for machine health diagnosis. The new feature extraction is done in three steps: first, the Phase Space Reconstruction (PSR) is performed to reconstruct a phase space with the dimension covering dynamic structure information; second, the ICA bases are trained by a number of constructed phase points; and finally, the new feature is quantitatively calculated by evaluating the correlation property of transformed coefficients based on ICA bases. The presented feature contains plentiful phase information with the training pattern, which is often under evaluated when using existing methods. It has excellent pattern representation property and can be applied for signal classification and assessment. Experiments in an automobile transmission gearbox validate the effectiveness of the new method.

References

1.
Samanta
,
B.
, and
Al-Balushi
,
K. R.
, 2003, “
Artificial Neural Network Based Fault Diagnostics of Rolling Element Bearings Using Time-Domain Features
,”
Mech. Syst. Signal Process.
,
17
(
2
), pp.
317
328
.
2.
Chen
,
Y. D.
,
Du
,
R.
, and
Qu
,
L.
, 2005, “
Fault Features of Large Rotating Machinery and Diagnosis Using Sensor Fusion
,”
J. Sound Vib.
,
188
(
2
), pp.
227
242
.
3.
Wang
,
W.
, and
Wong
,
A. K.
, 2002, “
Autoregressive Model-Based Gear Fault Diagnosis
,”
ASME J. Vib. Acoust.
,
124
, pp.
172
179
.
4.
Bornn
,
L.
,
Farrar
,
C. R.
,
Park
,
G.
, and
Farinholt
,
K.
, 2009, “
Structural Health Monitoring With Autoregressive Support Vector Machines
,”
ASME J. Vib. Acoust.
,
131
,
021004
.
5.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection For Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vib. Acoust.
,
123
, pp.
303
310
.
6.
Lin
,
J.
, and
Zuo
,
M. J.
, 2004, “
Extraction of Periodic Components for Gearbox Diagnosis Combining Wavelet Filtering and Cyclostationary Analysis
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
449
451
.
7.
Yan
,
R.
,
Gao
,
R. X.
, and
Wang
,
C.
, 2009, “
Experimental Evaluation of a Unified Time-Scale-Frequency Technique for Bearing Defect Feature Extraction
,”
ASME J. Vib. Acoust.
,
131
,
041012
.
8.
Yan
,
R.
, and
Gao
,
R. X.
, 2008, “
Rotary Machine Health Diagnosis Based on Empirical Mode Decomposition
,”
ASME J. Vib. Acoust.
,
130
,
021007
.
9.
He
,
Q.
,
Liu
,
Y.
, and
Kong
,
F.
, 2011, “
Machine Fault Signature Analysis by Midpoint-Based Empirical Mode Decomposition
,”
Meas. Sci. Technol.
,
22
,
015702
.
10.
Jiang
,
J. D.
,
Chen
,
J.
, and
Qu
,
L. S.
, 1999, “
The Application of Correlation Dimension in Gearbox Condition Monitoring
,”
J. Sound Vib.
,
23
, pp.
529
542
.
11.
Feng
,
Z.
,
Zuo
,
M. J.
, and
Chu
,
F.
, 2010, “
Application of Regularization Dimension to Gear Damage Assessment
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
1081
1098
.
12.
Yan
,
R.
, and
Gao
,
R. X.
, 2007, “
Approximate Entropy as a Diagnostic Tool for Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
21
, pp.
824
839
.
13.
Wang
,
G. F.
,
Li
,
Y. B.
, and
Luo
,
Z. G.
, 2009, “
Fault Classification of Rolling Bearing Based on Reconstructed Phase Space and Gaussian Mixture Model
,”
J. Sound Vib.
,
323
, pp.
1077
1089
.
14.
Li
,
M. J.
,
Yang
,
X.
,
Yang
,
J. D.
, and
Wang
,
D.
, 2009, “
Multiple Manifolds Analysis and Its Application to Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
23
(
8
), pp.
2500
2509
.
15.
Schölkopf
,
B.
,
Smola
,
A.
, and
Müller
,
K.-R.
, 1998, “
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
,”
Neural Comput.
,
10
, pp.
1299
1319
.
16.
Baydar
,
N.
,
Chen
,
Q.
,
Ball
,
A.
, and
Kruger
,
U.
, 2001, “
Detection of Incipient Tooth Defect in Helical Gears Using Multivariate Statistics
,”
Mech. Syst. Signal Process.
,
15
, pp.
303
321
.
17.
Gelle
,
G.
,
Colas
,
M.
, and
Serviere
,
C.
, 2001, “
Blind Source Separation: A Tool for Rotating Machine Monitoring by Vibration Analysis?
J. Sound Vib.
,
248
(
5
), pp.
865
885
.
18.
Li
,
Z.
,
He
,
Y.
,
Chu
,
F.
,
Han
,
W.
, and
Hao
,
J.
, 2006, “
Fault Recognition Method for Speed-Up and Speed-Down Process of Rotating Machinery Based on Independent Component Analysis and Factorial Hidden Markov Model
,”
J. Sound Vib.
,
291
, pp.
60
71
.
19.
He
,
Q.
,
Kong
,
F.
, and
Yan
,
R.
, 2007, “
Subspace-Based Gearbox Condition Monitoring by Kernel Principal Component Analysis
,”
Mech. Syst. Signal Process.
,
21
(
4
), pp.
1755
1772
.
20.
Hyvärinen
,
A.
,
Karhunen
,
J.
, and
Oja
,
E.
, 2001,
Independent Component Analysis
,
John Wiley and Sons.
,
New York
.
21.
Bell
,
J.
, and
Sejnowski
,
T. J.
, 1996, “
Learning the Higher-Order Structure of a Nature Sound
,”
Network-Comp. Neural.
,
7
, pp.
261
266
.
22.
Bell
,
J.
, and
Sejnowski
,
T. J.
, 1997, “
The ‘Independent Components’ of Natural Scenes are Edge Filters
,”
Vision Res.
,
37
, pp.
3327
3338
.
23.
Lee
,
J.-H.
,
Jung
,
H.-Y.
,
Lee
,
T.-W.
, and
Lee
,
S.-Y.
, 2000, “
Speech Feature Extraction Using Independent Component Analysis
,”
Proc. ICASSP
,
3
, pp.
1631
1634
.
24.
Lee
,
T.-W.
, and
Jang
,
G.-J.
, 2001, “
The Statistical Structures of Male and Female Speech Signals
,”
Proc. ICASSP
,
1
, pp.
105
108
.
25.
He
,
Q.
,
Feng
,
Z.
, and
Kong
,
F.
, 2007, “
Detection of Signal Transients Using Independent Component Analysis and Its Application in Gearbox Condition Monitoring
,”
Mech. Syst. Signal Process.
,
21
, pp.
2056
2071
.
26.
He
,
Q.
,
Du
,
R.
, and
Kong
,
F.
, 2008, “
ICA Based Feature Extraction from One-Dimensional Signal for Machine Condition Monitoring
,”
Proceedings of the I2MTC
,
Victoria, Vancouver Island, Canada
, pp.
1690
1694
.
27.
Takens
,
F.
, 1981, “
Detecting Strange Attractors in Turbulence
,”
Dynamical System and Turbulence
(Lecture Notes in Mathematics),
D. A.
Rand
, and
L.-S.
Young
, eds.,
Springer-Verlag
,
Berlin
, Vol.
898
, pp.
366
387
.
28.
Kennel
,
M.
,
Brown
,
R.
, and
Abarbanel
,
H.
, 1992, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A.
,
45
(
6
), pp.
3403
3411
.
29.
Cao
,
L.
, 1997, “
Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series
,”
Physica D.
,
110
, pp.
43
50
.
30.
Sauer
,
T.
,
Yorke
,
J. A.
, and
Casdagli
,
M.
, 1991, “
Embedology
,”
J. Stat. Phys.
,
65
, pp.
579
561
.
31.
Hyvärinen
,
A.
, and
Oja
,
E.
, 1997, “
A Fast Fixed-Point Algorithm for Independent Component Analysis
,”
Neural Comput.
,
9
, pp.
1483
1492
.
32.
Bell
,
A.
, and
Sejnowski
,
T.
, 1995, “
An Information-Maximization Approach to Blind Separation and Blind Deconvolution
,”
Neural Comput.
,
7
, pp.
1129
1159
.
You do not currently have access to this content.