Vibration-based energy harvesters are usually designed to exhibit natural frequencies that match those of the excitation for maximum power output. This has spurred interest into the design of devices that respond to variable frequency sources. In this work, an electromagnetic energy harvester in the form of a base excited trapezoidal plate is proposed. The plate geometry is designed to achieve two closely spaced vibration modes in order to harvest energy across a broader bandwidth. The ensuing bending and twisting vibrations are utilized in this capacity by placing a magnet on the plate tip that moves past a stationary coil. A dynamic model is presented to predict the system performance and is verified experimentally.

References

1.
Priya
,
S.
, and
Inman
,
D. J.
, 2009,
Energy Harvesting Technologies
,
Springer
,
New York
.
2.
Stephen
,
N. G.
, 2006, “
On Energy Harvesting from Ambient Vibration
,”
J. Sound Vib.
,
293
, pp.
409
425
.
3.
Bouendeu
,
E.
,
Greiner
,
A.
,
Smith
,
P. J.
, and
Korvink
,
J. G.
, 2011, “
A Low-Cost Electromagnetic Generator for Vibration Energy Harvesting
,”
IEEE Sens. J.
,
11
(
1
), pp.
107
113
.
4.
Mansour
,
M. O.
,
Arafa
,
M. H.
, and
Megahed
,
S. M.
, 2010, “
Resonator With Magnetically Adjustable Natural Frequency for Vibration Energy Harvesting
,”
Sens. Actuators, A
,
163
, pp.
297
303
.
5.
Zhu
,
D.
,
Roberts
,
S.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
, 2010, “
Design and Experimental Characterization of a Tunable Vibration-Based Electromagnetic Micro-Generator
,”
Sens. Actuators, A
,
158
, pp.
284
293
.
6.
Xue
,
H.
,
Hu
,
Y.
, and
Wang
,
Q.-M.
, 2008, “
Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
55
(
9
), pp.
2104
2108
.
7.
Mann
,
B. P.
, and
Sims
,
N. D.
, 2009, “
Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
, pp.
515
530
.
8.
Arrieta
,
A. F.
,
Hagedorn
,
P.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2010, “
A Piezoelectric Bistable Plate for Nonlinear Broadband Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
10
), pp.
104102
104105
.
9.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
, 2009, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
, pp.
254102
254105
.
10.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J
, 2009, “
Modeling of Piezoelectric Energy Harvesting from an L-Shaped Beam-Mass Structure with an Application to UAVs
,”
J. Intell. Mater. Syst. Struct.
20
(
5
), pp.
529
544
.
11.
Gu
,
L.
, and
Livermore
,
C.
, 2010, “
Passive Self-tuning Energy Harvester for Extracting Energy from Rotational Motion
,”
Appl. Phys. Lett.
,
97
, pp.
081904
081907
.
12.
Wells
,
L.
,
Lin
,
Y.
,
Sodano
,
H.
, and
Youn
,
B.
, 2007, “
Geometric Optimization of a Piezoelectric Power Harvesting Plate for Increased Bandwidth
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conference and Computers and Information in Engineering Conference (IDETC/CIE2007)
, September 4–7, Las Vegas, Nevada.
13.
De Marqui
, Jr.,
C.
,
Erturk
,
A.
, and
Inman
,
D. J.
, 2009, “
An Electromechanical Finite Element Model for Piezoelectric Energy Harvester Plates
,”
J. Sound Vib.
,
327
, pp.
9
25
.
14.
Bartsch
,
U.
,
Gaspar
,
J.
, and
Paul
,
O.
, 2010, “
Low-Frequency Two-dimensional Resonators for Vibrational Micro Energy Harvesting
,”
J. Micromech. Microeng.
,
20
, pp.
1
12
.
15.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2005,
The Finite Element Method
,
Butterworth-Heinemann
,
Oxford
.
16.
Henshell
,
R. D.
,
Walters
,
D.
, and
Warburton
,
G. B.
, 1972, “
A New Family of Curvilinear Plate Bending Elements for Vibration and Stability
,”
J. Sound Vib.
,
20
, pp.
327
343
.
17.
Poulin
,
G.
,
Sarraute
,
E.
, and
Costa
,
F.
, 2004, “
Generation of Electrical Energy for Portable Devices: Comparative Study of an Electromagnetic and a Piezoelectric System
,”
Sens. Actuators, A
,
116
, pp.
461
471
.
You do not currently have access to this content.