The prediction of self friction-induced vibrations is of major importance in the design of dry friction systems. This is known to be a challenging problem since dry friction systems are very complex nonlinear systems. Moreover, it has been shown that the friction coefficients admit dispersions depending in general on the manufacturing process of dry friction systems. As the dynamic behavior of these systems is very sensitive to the friction parameters, it is necessary to predict the friction-induced vibrations by taking into account the dispersion of friction. So, the main problem is to define efficient methods which help to predict friction-induced vibrations by taking into account both nonlinear and random aspect of dry friction systems. The multi-element generalized polynomial chaos formalism is proposed to deal with this question in a more general setting. It is shown that, in the case of friction-induced vibrations obtained from long time integration, the proposed method is efficient by opposite to the generalized polynomial chaos based method and constitutes an interesting alternative to the prohibitive Monte Carlo method.

References

1.
Sinou
,
J. J.
,
Fritz
,
G.
, and
Jezequel
,
L.
, 2007, “
The Role of Damping and Definition of the Robust Damping Factor for a Self-Exciting Mechanism With Constant Friction
,”
J. Vib. Acoust.
,
129
(
3
), pp.
297
307
.
2.
Sinou
,
J. J.
,
Thouverez
,
F.
, and
Jezequel
,
L.
, 2004, “
Stability Analysis of a Complex Non-Linear Rotor/stator Contact
,”
J. Sound Vib.
,
278
(
4–5
), pp.
1095
1129
.
3.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
, 2005, “
Numerical Analysis of automotive Disc Brake Squeal: A Review
,”
Int. J. Veh. Noise.
,
1
(
3–4
), pp.
207
231
.
4.
Kinkaid
,
N.
,
O’Reilly
,
O. M.
, and
Papadopoulos
,
P.
, 2003, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
(
1
), pp.
105
166
.
5.
Hervé
,
B.
,
Sinou
,
J.-.J.
,
Mahé
,
H.
, and
Jézéquel
,
L.
, 2009, “
Extension of the Destabilization Paradox to Limit Cycle Amplitudes for a Nonlinear Self-Excited System Subject to Gyroscopic and Circulatory Actions
,”
J. Sound Vib.
,
323
(
3–5
), pp.
944
973
.
6.
D’Souza
,
A. F.
, and
Dweib
,
A. H.
, 1990, “
Self-Excited Vibration Induced by Dry Friction. Part 2: Stability and Limit-Cycle Analysis
,”
J. Sound Vib.
,
137
(
2
), pp.
177
190
.
7.
Eriksson
,
M.
, and
Jacobson
,
S.
, 2001, “
Friction Behaviour and Squeal Generation of Disc Brakes at Low Speeds
,”
Proc. Inst. Mech. Eng.
,
215
(
12
), pp.
1245
1256
.
8.
Hoffmann
,
N.
, and
Gaul
,
L.
, 2003, “
Effects of Damping on Mode-Coupling Instability in Friction-Induced Oscillations
,”
Z. Angew. Math. Mech.
,
83
(
8
), pp.
524
534
.
9.
Sinou
,
J.-J.
, and
Jezequel
,
L.
, 2007, “
Mode Coupling Instability in Friction-Induced Vibrations and its Dependency on System Parameters Including Damping
,”
Eur. J. Mech. A/Solids.
,
26
(
1
), pp.
106
122
.
10.
Antoniou
,
S. S.
,
Cameron
,
A.
, and
Gentle
,
C. R.
, 1976, “
The Friction-Speed Relation from Stick-Slip Data
,”
Wear
,
36
, pp.
235
254
.
11.
Oden
,
J. T.
, and
Martins
,
J. A. C.
, 1985, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Computer Methods in Applied Mechanics and Engineering.
,
52
(
1–3
), pp.
527
634
.
12.
Van De Velde
,
F.
, and
De Baets
,
P.
, 1998, “
A New Approach of Stick-Slip Based on Quasi-Harmonic Tangential Oscillations
,”
Wear
,
216
, pp.
15
26
.
13.
Van De Velde
,
F.
, and
De Baets
,
P.
, 1998, “
The Relation Between Friction Force and Relative Speed During the Slip-Phase of Stick-Slip Cycle
,”
Wear
,
219
, pp.
220
226
.
14.
Sinou
,
J. J.
,
Dereure
,
O.
,
Mazet
,
F.
,
Thouverz
,
F.
, and
Jezequel
,
L.
, 2006, “
Friction-Induced Vibration for an Aircraft Brake System-Part 1: Experimental Approach and Stability Analysis
,”
Int. J. Mech. Sci.
,
48
(
5
), pp.
536
554
.
15.
Sinou
,
J. J.
,
Dereure
,
O.
,
Mazet
,
F.
,
Thouverz
,
F.
, and
Jezequel
,
L.
, 2006, “
Friction-Induced Vibration for an Aircraft Brake System–Part 2: Nonlinear Dynamics
,”
Int. J. Mech. Sci.
,
48
(
5
), pp.
555
567
.
16.
Sinou
,
J.-J.
, and
Jezequel
,
L.
, 2004, “
Methods to Reduce Nonlinear Mechanical Systems for Instability Computation
,”
Arch. Comput. Methods Eng.
,
11
(
3
), pp.
257
344
.
17.
Ibrahim
,
R. A.
, 1994, “
Friction-Induced Vibration, Chatter, Squeal and Chaos: Part I-Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
209
226
.
18.
Ibrahim
,
R. A.
, 1994, “
Friction-Induced Vibration, Chatter, Squeal and Chaos: Part II-Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
227
253
.
19.
Shin
,
K.
,
Oh
,
J. E.
, and
Brennan
,
M. J.
, 2002, “
Nonlinear Analysis of Friction Induced Vibrations of a Two Degree of Freedom Model for Disc Brake Squeal Noise
,”
JSME Int. J. Ser. C
,
45
(
2
), pp.
426
432
.
20.
Chevennement-Roux
,
C.
,
Grenouillat
,
R.
,
Dreher
,
T.
,
Alliot
,
P.
,
Aubry
,
E.
,
Lainé
,
J.-P.
, and
Jezequel
,
L.
, 2005, “
Wiper System With Flexible Structures-Instabilities Analysis and Correlation With a Theoretical Model
,” SAE Paper No. 2005-01-2375.
21.
Chevennement-Roux
,
C.
,
Dreher
,
T.
,
Alliot
,
P.
,
Aubry
,
E.
,
Lainé
,
J.-P.
, and
Jezequel
,
L.
, 2007, “
Flexible Wiper System Dynamic Instabilities: Modeling and Experimental Validation
,”
Springer Exp. Mech.
,
47
(
2
), pp.
201
210
.
22.
Ragot
,
P.
,
Berger
,
S.
, and
Aubry
,
E.
, 2008, “
Interval Approach Applied to Blades of Windscreens Wiper
,”
Int. J. Pure Appl. Math.
,
46
(
5
), pp.
643
648
.
23.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
, 2011, “
A Polynomial Chaos Approach to the Robust Analysis of the Dynamic Behavior of Friction Systems
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
594
607
.
24.
Lee
,
H. W.
,
Sandu
,
C.
, and
Holton
,
C.
, 2010, “
Wheel-Rail Dynamic Model and Stochastic Analysis of the Friction in the Contact Path
,”
Proceedings of the ASME 2010 Joint Rail Conference
, Paper No. JRC2010-36229.
25.
Fishman
,
G. S.
, 1996,
Monte Carlo, Concepts, Algorithms and Applications
,
Springer-Verlag
,
Berlin
.
26.
Papadrakakis
,
M.
, and
Papadopoulos
,
V.
, 1999, “
Parallel Solution Methods for Stochastic Finite Element Analysis Using Monte Carlo Simulation
,”
Comput. Methods Appl. Eng.
,
168
(
1–4
), pp.
305
320
.
27.
Helton
,
J. C.
, and
Davis
,
F. J.
, 2003, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
28.
Lindsley
,
N. J.
, and
Beran
,
P. S.
, 2005, “
Increased Efficiency in the Stochastic Interrogation of an Uncertain Nonlinear Aeroelastic System
,”
International Forum on Aeroelastic and Structural Dynamics
, Munich, IF-055.
29.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
, 2010, “
Robust Analysis of Uncertain Dynamic Systems: Combination of the Centre Manifold and Polynomial Chaos Theories
,”
Wseas. Trans. Syst.
,
1
(
9
), pp.
386
395
.
30.
Wiener
,
N.
, 1938, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
, pp.
897
936
.
31.
Ghanem
,
R.
, and
Spanos
,
P. D.
, 1991,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
Berlin
.
32.
Cameron
,
H.
, and
Martin
,
W.
, 1947, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier-Hermite Functional
,”
Ann. Math.
,
48
, pp.
385
392
.
33.
Xiu
,
D.
, and
Karniadakis
,
G. E.
, 2002, “
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods. Appl. Mech. Eng.
,
191
(
43
), pp.
4927
4948
.
34.
Wan
,
X.
, and
Karniadakis
,
G. E.
, 2006, “
Beyond Wiener-Askey Expansions: Handling Arbitrary PDFs
,”
J. Sci. Compt.
,
27
(
1–3
), pp.
455
464
.
35.
Babuska
,
I.
,
Tempone
,
R.
, and
Zouraris
,
G. E.
, 2004, “
Galerkin Finite Element Approximation of Stochastic Elliptic Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
42
(
2
), pp.
800
825
.
36.
Babuska
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
, 2007, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.
37.
Crestaux
,
T.
,
Le Maitre
,
O.
, and
Martinez
,
J. M.
, 2009, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.
38.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems With Uncertainties. Part I: Numerical Application
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.
39.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
, 2006, “
Modeling Multibody Dynamic Systems With Uncertainties. Part II: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.
40.
Isukapalli
,
S. S.
,
Roy
,
A.
, and
Georgopoulos
,
P. G.
, 1998, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
18
(
3
), pp.
351
363
.
41.
Williams
,
M. M. R.
, 2006, “
Polynomial Chaos Functions and Stochastic Differential Equations
,”
Ann. Nucl. Energy
,
33
(
9
), pp.
774
785
.
42.
Li
,
J.
, and
Xiu
,
D.
, 2009, “
A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy
,”
J. Comput. Phys.
,
228
(
15
), pp.
5454
5469
.
43.
Blanchard
,
E.
,
Sandu
,
A.
, and
Sandu
,
C.
, 2010, “
A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems
,”
ASME J. Dyn. Syst. Meas. Control.
,
132
(
6
), p.
061404
.
44.
Smith
,
A. H. C.
,
Monti
,
A.
, and
Ponci
,
F.
, 2007, “
Indirect Measurements via a Polynomial Chaos Observer
,”
IEEE Trans. Instrum. Meas.
,
56
(
3
), pp.
743
752
.
45.
Sudret
,
B.
, 2007, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
46.
Hover
,
F. S.
, and
Triantafyllou
,
S.
, 2006, “
Application of Polynomial Chaos in Stability and Control
,”
Automatica
,
42
(
5
), pp.
789
795
.
47.
Witteveen
,
J. A. S.
,
Loeven
,
A.
,
Sarkar
,
S.
, and
Bijl
,
H.
, 2007, “
Probabilistic Collocation for Periodic-1 Limit Cycle Oscillations
,”
J. Sound Vib.
,
311
(
1–2
), pp.
421
439
.
48.
Beran
,
P. S.
,
Pettit
,
C. L.
, and
Millman
,
D. L.
, 2006, “
Uncertainty Quantification of Limit-Cycle Oscillations
,”
J. Comput. Phys.
,
217
(
1
), pp.
217
247
.
49.
Pettit
,
C. L.
, and
Beran
,
P. S.
, 2004, “
Polynomial Chaos Expansion Applied to Airfoil Limit Cycle Oscillations
,”
Proceedings of the 45th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference
, CA, Paper No. AIAA 2004-1691.
50.
Millman
,
D. R.
,
King
,
P. I.
, and
Beran
,
P. S.
, 2003, “
A Stochastic Approach for Predicting Bifurcation of a Pitch and Plung Airfoil
,”
Proceedings of the 21st AIAA Applied Aerodynamics Conference
, Orlando, FL, Paper No. AIAA-2003-3515.
51.
Pettit
,
C. L.
, and
Beran
,
P. S.
, 2006, “
Spectral and Multiresolution Wiener Expansions of Oscillatory Stochastic Process
,”
J. Sound Vib.
,
294
(
4–5
), pp.
752
779
.
52.
Millman
,
D. R.
,
King
,
P. I.
, and
Beran
,
P. S.
, 2005, “
Airfoil Pitch-and-Plunge Bifurcation Behaviour With Fourier Chaos Expansions
,”
J. Aircr.
,
42
(
3
), pp.
376
384
.
53.
Le Maitre
,
O. P.
,
Knio
,
M.
,
Najm
,
H. N.
, and
Ghanem
,
R. G.
, 2004, “
Uncertainty Propagation Using Wiener-Haar Expansions
,”
J. Comput. Phys.
,
197
(
1
), pp.
28
57
.
54.
Wan
,
X.
, and
Karniadakis
,
G.
, 2005, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.
55.
Kewlani
,
G.
, and
Iagnemma
,
K.
, 2009, “
A Multi-Element Generalized Polynomial Chaos Approach to Analysis of Mobile Robot Dynamic Under Uncertainty
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis.
56.
Spurr
,
R.
, 1961, “
A Theory of Brake Squeal
,”
Proc. Inst. Mech. Eng.
,
1
(
3
), pp.
33
40
. Available at: http://pad.sagepub.com/content/15/1/33.full.pdf.
57.
Chambrette
,
P.
, and
Jezequel
,
L.
, 1992, “
Stability of a Beam Rubbed Against a Rotating Disc
,”
Eur. J. Meh. A/Solids.
,
11
(
1
), pp.
107
138
.
58.
Hultèn
,
J.
, 1993, “
Drum Break Squeal–A Self-Exciting Mechanism With Constant Friction
,”
Proceedings of the SAE Truck and Bus Meeting
, Detroit, MI, SAE Paper No. 932965.
You do not currently have access to this content.