The problem of obtaining a modal (i.e., infinite series) solution of second order flexible structures with viscous damping boundary conditions is considered. In conservative boundary systems, separation of variables is well established and there exist closed form modal solutions. However, no counterpart results exist for the damped boundary case and previous publications fall short of providing a complete solution for the series, in particular, its coefficients. The paper presents the free response of damped boundary structures to general initial conditions in the form of an infinite sum of products of spatial and time functions. The problem is attended via Laplace domain approach, and explicit expressions for the series components and coefficients are derived. The modal approach is useful in finite dimension modeling, since it provides a convenient framework for truncation. It is shown via examples that often few modes suffice for approximation with good accuracy.

References

1.
Meirovitch
,
L.
,
1997
,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Selvadurai
,
A. P. S.
,
2000
,
Partial Differential Equations in Mechanics
, Vol.
1
,
Springer-Verlag
,
Berlin
.
3.
Inman
,
D. J.
,
1994
,
Engineering Vibration
,
Prentice-Hall
,
Englewood, Cliffs, NJ
.
4.
Knobel
,
R.
,
2000
,
An Introduction to the Mathematical Theory of Waves
,
American Mathematical Society
,
Providence
, RI.
5.
Kreyszig
,
E.
,
1999
,
Advanced Engineering Mathematics
,
Wiley
,
New York
.
6.
Myint-U
,
T.
, and
Debnath
,
L.
,
1987
,
Partial Differential Equations for Scientists and Engineers
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
7.
Tikhonov
,
A. N.
, and
Samarskii
,
A. A.
,
1963
,
Equations of Mathematical Physics
,
Pergamon Press
,
London
.
8.
Driscoll
,
T. A.
, and
Trefethen
,
L. N.
,
1996
, “
Pseudospectra for the Wave Equation With an Absorbing Boundary
,”
J. Comput. Appl. Math.
,
69
, pp.
125
142
.10.1016/0377-0427(95)00021-6
9.
van Rensburg
,
N. F. J.
,
van der Merwe
,
A. J.
, and
Roux
,
A.
,
2010
, “
Waves in a Vibrating Solid With Boundary Damping
,”
Wave Motion
,
47
, pp.
663
675
.10.1016/j.wavemoti.2010.06.003
10.
Halevi
,
Y.
,
2005
, “
Control of Flexible Structures Governed by the Wave Equation Using Infinite Dimensional Transfer Functions
,”
ASME J. Dyn. Syst., Meas., Control
,
127
, pp.
579
588
.10.1115/1.2098895
11.
Halevi
,
Y.
, and
Wagner-Nachshoni
,
C.
,
2006
, “
Transfer Function Modeling of Multi-Link Flexible Structures
,”
J. Sound Vib.
,
296
(
1–2
), pp.
73
90
.10.1016/j.jsv.2006.01.069
12.
Sirota
,
L.
,
Peled
,
I.
, and
Halevi
,
Y.
,
2008
, “
Vibration Suppression of Flexible Structures Using the Infinite Dimension Laplace Domain Approach
,”
9th Biennial ASME Conference on Engineering Systems Design and Analysis (ESDA)
,
Haifa, Israel
, July 7–9,
ASME
Paper No. ESDA2008-59150. 10.1115/ESDA2008-59150
13.
Sirota
,
L.
, and
Halevi
,
Y.
,
2009
, “
Free Response and Absolute Vibration Suppression of Second Order Flexible Structures–The Traveling Wave Approach
,”
ASME J. Vibr. Acoust.
,
132
, p.
031008
.10.1115/1.4000771
14.
Halevi
,
Y.
, and
Peled
,
I.
,
2010
, “
Absolute Vibration Suppression (AVS) Control–Modeling, Implementation and Robustness
,”
Shock Vib.
,
17
(
4–5
), pp.
349
357
.10.3233/SAV-2010-0531
15.
Majda
,
A.
,
1975
, “
Disappearing Solutions for the Dissipative Wave Equation
,”
Indiana Univ. Math. J.
,
24
(
12
), pp.
1119
1133
.10.1512/iumj.1975.24.24093
16.
Bayliss
,
A.
, and
Turkel
,
E.
,
1980
, “
Radiation Boundary Conditions for Wave-like Equations
,”
Commun. Pure Appl. Math.
,
33
, pp.
707
725
.10.1002/cpa.3160330603
17.
Givoli
,
D.
,
2001
, “
High-Order Nonreflecting Boundary Conditions Without High-Order Derivatives
,”
J. Comput. Phys.
,
170
, pp.
849
870
.10.1006/jcph.2001.6766
18.
Schiff
,
J. L.
,
1999
,
The Laplace Transform–Theory and Applications
,
Springer
,
New York
.
You do not currently have access to this content.