This paper presents semi-exact, closed-form algebraic expressions for the natural frequencies of Kirchhoff–Love plates by analyzing plane waves, their edge reflections, and their phase closure. The semi-exact nature is such that the analysis exactly satisfies plate boundary conditions along each edge when taken in isolation, but not fully when combined, and thus is approximate near a corner. As frequency increases, the expressions become increasingly more accurate. For clamped square plates, closed-form expressions are reported in algebraic form for the first time. These expressions are developed by tracing the path of plane waves as they reflect from edges while accounting for phase changes over a total trip. This change includes phase addition/subtraction due to edge reflections. A natural frequency is identified as a frequency in which three phase changes (in the plate's horizontal, vertical, and path directions) each sum to an integer multiple of 2π, enforcing phase closure along each direction. A solution of the subsequent equations is found in closed form, for multiple boundary conditions, such that highly convenient algebraic expressions result for the plate natural frequencies. The expressions are exact for the case of all sides simply supported, while for other boundary conditions, the expressions are semi-exact. For the practically important and difficult case of a fully clamped plate, the expressions for a square plate yield the first 20 nondimensional natural frequencies to within 0.06% of their exact values.

References

1.
Love
,
A. E. H.
,
1888
, “
The Small Free Vibrations and Deformation of a Thin Elastic Shell
,”
Philos. Trans. R. Soc., A
,
179
(
0
), pp.
491
546
.
2.
Kirchhoff
,
G. R.
,
1850
, “
Uber Das Gleichgewicht Und Die Bewegung Einer Elastischen Scheibe
,”
J. Reine Angew. Math.
,
40
, pp.
51
88
.
3.
Timoshenko
,
S.
,
Woinowsky-Krieger
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
4.
Szilard
,
R.
,
1974
,
Theory and Analysis of Plates: Classical and Numerical Methods
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Reddy
,
J. N.
,
2006
,
Theory and Analysis of Elastic Plates and Shells
,
CRC Press
,
Boca Raton
.
6.
Leissa
,
A. W.
,
1973
, “
Free Vibration of Rectangular-Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.
7.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,” National Aeronautics and Space Administration, Washington, DC,
Technical Report No. NASA SP-160
.
8.
Warburton
,
G.
,
1954
, “
The Vibration of Rectangular Plates
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
371
384
.
9.
Janich
,
R.
,
1962
, “
Die Näherungsweise Berechnung Der Eigenfrequenzen Von Rechteckigen Platten Bei Verschiedenen Randbedingungen
,”
Die Bautech.
,
3
, pp.
93
99
.
10.
Xing
,
Y.
, and
Liu
,
B.
,
2009
, “
New Exact Solutions for Free Vibrations of Rectangular Thin Plates by Symplectic Dual Method
,”
Acta Mech. Sin.
,
25
(
2
), pp.
265
270
.
11.
Keller
,
J. B.
,
1958
, “
Corrected Bohr–Sommerfeld Quantum Conditions for Nonseparable Systems
,”
Ann. Phys.
,
4
(
2
), pp.
180
188
.
12.
Keller
,
J. B.
, and
Rubinow
,
S.
,
1960
, “
Asymptotic Solution of Eigenvalue Problems
,”
Ann. Phys.
,
9
(
1
), pp.
24
75
.
13.
Chen
,
G.
,
Coleman
,
M. P.
, and
Zhou
,
J. X.
,
1991
, “
Analysis of Vibration Eigenfrequencies of a Thin Plate by the Keller–Rubinow Wave Method. 1. Clamped Boundary-Conditions With Rectangular or Circular Geometry
,”
SIAM J. Appl. Math.
,
51
(
4
), pp.
967
983
.
14.
Gupta
,
G. S.
,
1970
, “
Natural Flexural Waves and Normal Modes of Periodically-Supported Beams and Plates
,”
J. Sound Vib.
,
13
(
1
), pp.
89
101
.
15.
Gupta
,
G. S.
,
1971
, “
Natural Frequencies of Periodic Skin-Stringer Structures Using a Wave Approach
,”
J. Sound Vib.
,
16
(
4
), pp.
567
580
.
16.
Gupta
,
G. S.
,
1972
, “
Propagation of Flexural Waves in Doubly-Periodic Structures
,”
J. Sound Vib.
,
20
(
1
), pp.
39
49
.
17.
Mead
,
D. J.
,
1975
, “
Wave-Propagation and Natural Modes in Periodic Systems. 1. Mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.
18.
Mead
,
D. J.
,
1975
, “
Wave-Propagation and Natural Modes in Periodic Systems. 2. Multi-Coupled Systems, With and Without Damping
,”
J. Sound Vib.
,
40
(
1
), pp.
19
39
.
19.
Mead
,
D. J.
, and
Parthan
,
S.
,
1979
, “
Free Wave-Propagation in 2-Dimensional Periodic Plates
,”
J. Sound Vib.
,
64
(
3
), pp.
325
348
.
20.
Mead
,
D. J.
,
Zhu
,
D. C.
, and
Bardell
,
N. S.
,
1988
, “
Free-Vibration of an Orthogonally Stiffened Flat-Plate
,”
J. Sound Vib.
,
127
(
1
), pp.
19
48
.
21.
Faulkner
,
M. G.
, and
Hong
,
D. P.
,
1985
, “
Free-Vibrations of a Mono-Coupled Periodic System
,”
J. Sound Vib.
,
99
(
1
), pp.
29
42
.
22.
Brillouin
,
L.
,
1946
,
Wave Propagation in Periodic Structures
,
McGraw-Hill
,
New York
.
23.
Graff
,
K. F.
,
1975
,
Wave Motion in Elastic Solids
(Oxford Engineering Science Series),
Clarendon Press
,
Oxford
,
UK
.
24.
Bolotin
,
V.
,
1961
, “
Dynamic Edge Effect in the Elastic Vibrations of Plates
,”
Inzh. Sb.
,
31
(
1
), pp.
3
14
(in Russian).
25.
Mace
,
B.
,
1984
, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
,
97
(
2
), pp.
237
246
.
You do not currently have access to this content.