Nonmodal model order reduction (MOR) techniques present accurate and efficient ways to approximate input–output behavior of large-scale mechanical structures. In this regard, Krylov-based model reduction techniques for second-order mechanical structures are typically known to require a priori knowledge of the original system parameters, such as expansion points (or eigenfrequencies). The calculation of the eigenfrequencies of the original finite-element (FE) model can be significantly time-consuming for large-scale structures. Existing iterative rational Krylov algorithm (IRKA) addresses this issue by iteratively updating the expansion points for first-order formulations until convergence criteria are achieved. Motivated by preserving the model properties of second-order systems, this paper extends the IRKA method to second-order formulations, typically encountered in mechanical structures. The proposed second-order IRKA method is implemented on a large-scale system as an example and compared with the standard Krylov and Craig-Bampton reduction techniques. The results show that the second-order IRKA method provides tangibly reduced error for a multi-input-multi-output (MIMO) mechanical structure compared to the Craig-Bampton. In addition, unlike the standard Krylov methods, the second-order IRKA does not require the information on expansion points, which eliminates the need to perform a modal analysis on the original structure. This can be especially advantageous for large-scale systems where calculations of the eigenfrequencies of the original structure can be computationally expensive. For such large-scale systems, the proposed MOR technique can lead to significant reductions of the computational time.

References

1.
Guyan
,
J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), pp.
380
380
.
2.
Leung
,
A. Y.-T.
,
1978
, “
An Accurate Method of Dynamic Condensation in Structural Analysis
,”
Int. J. Num. Methods Eng.
,
12
(
11
), pp.
1705
1715
.
3.
Craig
,
R.
, and
Bampton
,
M.
,
1968
, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.
4.
Zhou
,
K.
,
Liang
,
G.
, and
Tang
,
J.
,
2016
, “
Component Mode Synthesis Order-Reduction for Dynamic Analysis of Structure Modelede With NURBS Finite Element
,”
ASME J. Vib. Acoust.
,
138
(
2
), p.
021016
.
5.
Hurty
,
W.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.
6.
O'Callahan
,
J.
,
1989
, “
A Procedure for an Improved Reduced System (IRS)
,”
Seventh International Modal Analysis Conference
, Las Vegas, NV, Jan. 30–Feb. 2, pp.
17
21
.
7.
O'Callahan
,
J.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
Seventh International Modal Analysis Conference
, Las Vegas, NV, Jan. 30–Feb. 2, pp.
29
37
.
8.
Qu
,
Z.-Q.
,
2004
,
Model Order Reduction Techniques: With Application in Finite Element Analysis
,
Springer
,
London
.
9.
Marinescu
,
O.
,
Epureanu
,
B.
, and
Banu
,
M.
,
2010
, “
Reduced Order Models of Mistuned Cracked Bladed Disks
,”
ASME
Paper No. IMECE2010-38733.
10.
Pesheck
,
E.
,
Pierre
,
C.
, and
Shaw
,
S.
,
2002
, “
Modal Reduction of a Nonlinear Rotating Beam Through Nonlinear Normal Modes
,”
ASME J. Vib. Acoust.
,
124
(
2
), pp.
229
236
.
11.
Deshmukh
,
V.
,
Butcher
,
E.
, and
Sinha
,
S.
,
2006
, “
Order Reduction of Parametrically Excited Linear and Nonlinear Structural Systems
,”
ASME J. Vib. Acoust.
,
128
(
4
), pp.
458
468
.
12.
Gurthrie
,
M. A.
, and
Kammer
,
D. C.
,
2011
, “
A Reduction Procedure for One-Dimensional Joint Models and Application to a Lap Joint
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031002
.
13.
Besselink
,
B.
,
Tabak
,
U.
,
Lutowska
,
A.
,
van de Wouw
,
N.
,
Nijmeijer
,
H.
,
Rixen
,
D.
,
Hochstenbach
,
M.
, and
Schilders
,
W.
,
2013
, “
A Comparison of Model Reduction Techniques From Structural Dynamic, Numerical Mathematics and Systems and Control
,”
J. Sound Vib.
,
332
(
19
), pp.
4403
4422
.
14.
Salimbahrami
,
B.
, and
Lohmann
,
B.
,
2006
, “
Order Reduction of Large Scale Second-Order Systems Using Krylov Subspace Methods
,”
Linear Algebra Appl.
,
415
(
2–3
), pp.
385
405
.
15.
Bai
,
Z.
,
2002
, “
Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynamical Systems
,”
Appl. Numer. Math.
,
43
(
1–2
), pp.
9
44
.
16.
Nowakowski
,
C.
,
Fehr
,
J.
,
Fischer
,
M.
, and
Eberhard
,
P.
,
2012
, “
Model Order Reduction in Elastic Multibody Systems Using the Floating Frame of Reference Formulation
,”
7th International Conference on Mathematical Modelling
(
MATHMOD
), Vienna, Austria, Vol. 7, pp.
40
48
.
17.
Shiiba
,
T.
,
Fehr
,
J.
, and
Eberhard
,
P.
,
2012
, “
Flexible Multibody Simulation of Automotive Systems With Non-Modal Model Reduction Techniques
,”
Veh. Syst. Dyn.: Int. J. Veh. Mech. Mobility
,
50
(
12
), pp.
1905
1922
.
18.
Lee
,
H.-J.
,
Chu
,
C.-C.
, and
Feng
,
W.-S.
,
2006
, “
An Adaptive-Order Rational Arnoldi Method for Model-Order Reductions of Linear Time-Invariant Systems
,”
Linear Algebra Appl.
,
415
(
2–3
), pp.
235
261
.
19.
Chu
,
C.-C.
,
Lai
,
M.-H.
, and
Feng
,
W.-S.
,
2008
, “
Model-Order Reductions for MIMO Systems Using Global Krylov Subspace Methods
,”
Math. Comput. Simul.
,
79
(
4
), pp.
1153
1164
.
20.
Gugercin
,
S.
,
Antoulas
,
A.
, and
Beattie
,
C.
,
2008
, “
H2 Model Reduction for Large-Scale Linear Dynamical Systems
,”
SIAM J. Matrix Anal. Appl.
,
30
(
2
), pp.
609
638
.
21.
Druskin
,
V.
, and
Simoncini
,
V.
,
2011
, “
Adaptive Rational Krylov Subspaces for Large-Scale Dynamical Systems
,”
Syst. Control Lett.
,
60
(
8
), pp.
546
560
.
22.
Flagg
,
G.
,
Beattie
,
C.
, and
Gugercin
,
S.
,
2012
, “
Convergence of the Iterative Rational Krylov Algorithm
,”
Syst. Control Lett.
,
61
(
6
), pp.
688
691
.
23.
Chu
,
C.-C.
,
Tsai
,
H.-C.
, and
Lai
,
M.-H.
,
2010
, “
Structure Preserving Model-Order Reductions for MIMO Second-Order Systems Using Arnoldi Methods
,”
Math. Comput. Modell.
,
51
(
7–8
), pp.
956
973
.
24.
Salimbahrami
,
B.
,
2005
, “
Structure Presrving Order Reduction of Large Scale Second Order Models
,”
Ph.D. thesis
, Technical University of Munich, Munich, Germany.
25.
Wyatt
,
S.
,
2012
, “
Issues in Interpolatory Model Reduction: Inexact Solves, Second-Order Systems and DAEs
,”
Ph.D. thesis
, Virginia Polythechnic Institute and State University, Blacksburg, VA.
26.
Freund
,
R.
,
2000
, “
Krylov-Subspace Methods for Reduced-Order Modeling in Curcuit Simulation
,”
J. Comput. Appl. Math.
,
123
(
1
), pp.
395
421
.
27.
Holzwarth
,
P.
, and
Eberhard
,
P.
,
2014
, “
Input–Output Based Model Reduction for Interconnected Systems
,”
11th World Congress on Computational Mechanics
(
WCCM XI
), Barcelona, Spain, July 20–25, pp.
464
474
.
28.
Friswell
,
M. I.
,
Garvey
,
S.
, and
Penny
,
J.
,
1995
, “
Model Reduction Using Dynamic and Iterated IRS Techniques
,”
J. Sound Vib.
,
186
(
2
), pp.
311
323
.
29.
Koutsovasilis
,
P.
,
2009
, “
Model Order Reduction in Structural Mechanics, Coupling the Rigid and Elastic Multibody Dynamics
,” Ph.D. thesis, Dresden Technical University, Dresden, Germany.
30.
Fehr
,
J.
, and
Eberhard
,
P.
,
2010
, “
Error-Controlled Model Reduction in Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
),
p
. 031005.
31.
Chu
,
C.-C.
,
Tsai
,
H.-C.
, and
Lai
,
M.-H.
,
2009
, “
Dynamical Equivalencing of Large-Scale Power Systems Using Second-Order Arnoldi Algorithms
,”
IEEE International Symposium on Circuits and Systems
(
ISCAS
), Taipei, Taiwan, May 24–27, pp.
1973
1976
.
32.
Fehr
,
J.
, and
Eberhard
,
P.
,
2011
, “
Simulation Process of Flexible Multibody Systems With Non-Modal Model Reduction Techniques
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
313
334
.
33.
Institute of Engineering and Computational Mechanics
,
2015
, “
Software MOREMBS
,” University of Stuttgart, Stuttgart, Germany, accessed June 4, 2015, http://www.itm.uni-stuttgart.de/research/model_reduction/MOREMBS_MatMorembs_en.php
You do not currently have access to this content.