The accuracy of the beam profile measurements achievable by the current wire scanners at CERN is limited by the vibrations of their mechanical parts. In particular, the vibrations of the carbon wire represent the major source of wire position uncertainty which limits the beam profile measurement accuracy. In the coming years, due to the Large Hadron Collider (LHC) luminosity upgrade, a wire traveling speed up to 20 m s−1 and a position measurement accuracy of the order of 1 μm will be required. A new wire scanner design based on the understanding of the wire vibration origin is therefore needed. We present the models developed to understand the main causes of the wire vibrations observed in an existing wire scanner. The development and tuning of those models are based on measurements and tests performed on that CERN proton synchrotron (PS) scanner. The final model for the (wire + fork) system has six degrees-of-freedom (DOF). The wire equations contain three different excitation terms: inertia forces associated with the fork rotation, parametric terms associated with the fork tips approaching/separating motion, and terms associated with the wire stiffness (Duffing terms). Though forced, parametric, and Duffing oscillators have been treated in the literature, it is the first time that a model containing all those terms is treated through a purely analytical model. The model has been run for different rotation patterns, and the results show the same trends as the measurements. From the simulations, we conclude that fork flexibility is the main cause of the wire vibration.

References

1.
Steinbach
,
C.
, and
Van Rooij
,
M.
,
1985
, “
A Scanning Wire Beam Profile Monitor
,”
IEEE Trans. Nucl. Sci.
,
32
(
5
), pp.
1920
1922
.
2.
Bosser
,
J.
,
1996
,
Beam Instrumentation
,
CERN
, Geneva, Switzerland, pp.
253
255
.
3.
Herranz
,
J.
,
Barjau
,
A.
, and
Dehning
,
B.
,
2015
, “
Vibration Measurements of a Wire Scanner—Experimental Setup and Models
,”
J. Mech. Syst. Signal Process.
,
70
, pp.
974
994
.
4.
Iida
,
N.
,
Tsuyoshi
,
S.
,
Funakoshi
,
Y.
,
Kawamoto
,
T.
, and
Kikuchi
,
M.
,
1998
, “
A Method for Measuring Vibrations in Wire Scanner Beam Profile Monitors
,”
1st Asian Particle Accelerator Conference
(
APAC98
), Tsukuba, Japan, Mar. 23–27.
5.
El-Attar
,
M.
,
Ghobarah
,
A.
, and
Aziz
,
T. S.
,
2000
, “
Non-Linear Cable Response to Multiple Support Periodic Excitation
,”
Eng. Struct.
,
22
(
10
), pp.
1301
1312
.
6.
Georgakis
,
C. T.
, and
Taylor
,
C. A.
,
2005
, “
Nonlinear Dynamics of Cable Stays. Part I: Sinusoidal Cable Support Excitation
,”
J. Sound Vib.
,
281
, pp.
537
564
.
7.
Dresig
,
H.
, and
Schreiber
,
U.
,
2005
, “
Vibration Analysis for Planetary Gears. Modeling and Multibody Simulation
,”
International Conference on Mechanical Engineering and Mechanics
, Nanjing, China, Oct. 25–26.
8.
Kuria
,
J.
, and
Kihiu
,
J.
,
2008
, “
Modeling Parametric Vibration of Multistage Gear Systems as a Tool for Design Optimization
,”
Int. J. Mech., Aerosp., Ind., Mechatr. Manu. Eng.
,
2
(2), pp. 217–224.
9.
Kim
,
W.
,
Ji Yeong Lee
,
L. Y.
, and
Jintai Chung
,
J.
,
2012
, “
Dynamic Analysis for a Planetary Gear With Time-Varying Pressure Angles and Contact Ratios
,”
J. Sound Vib.
,
331
(
4
), pp.
883
901
.
10.
Holden
,
C.
,
Galeazzi
,
R.
,
Rodríguez
,
C.
,
Perez
,
T.
,
Fossen
,
T.
,
Blank
,
M.
, and
Almeida
,
M.
,
2007
, “
Nonlinear Container Ship Model for the Study of Parametric Roll Resonance
,”
Modell., Identif. Control
,
28
(
4
), pp.
87
103
.
11.
Le Carrou
,
J.-L.
, and
Gautier
,
F.
,
2009
, “
Sympathetic String Modes in the Concert Harp
,”
Acta Acust. Acust.
,
95
(
4
), pp.
744
752
.
12.
Zhang
,
W. Z.
,
Baskaran
,
R.
, and
Turner
,
K. L.
,
2002
, “
Effect of Cubic Nonlinearitry on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators A: Phys.
,
102
(1–2), pp.
139
150
.
13.
Ng
,
L.
, and
Rand
,
R.
,
2002
, “
Bifurcations in a Mathieu Equation With Cubic Nonlinearities
,”
Chaos, Solitons Fractals
,
14
(
2
), pp.
173
181
.
14.
Alberg
,
H.
,
1985
, “
Parametrically Excited Vibrations—Numerical and Analytical Investigation of Simple Mechanical Systems
,”
Rakenteiden Mekaniikka
,
18
(
2
), pp.
3
14
.
15.
Tufilaro
,
N. B.
,
1988
, “
Nonlinear and Chaotic String Vibrations
,”
Am. J. Phys.
,
57
(
5
), pp.
408
414
.
16.
Gough
,
C.
,
1983
, “
The Nonlinear Free Vibration of a Damped Elastic String
,”
J. Acoust. Soc. Am.
,
75
(
6
), pp.
1770
1776
.
17.
Bank
,
B.
, and
Sujbert
,
L.
,
2004
, “
A Piano Model Including Longitudinal String Vibrations
,”
Seventh International Conference on Digital Audio Effects
(
DAFx’04
), Naples, Italy, Oct. 5–8, pp.
89
94
.
18.
Anand
,
G. V.
,
1969
, “
Large-Amplitude Damped Free Vibration of a Stretched String
,”
J. Acoust. Soc. Am.
,
45
(
5
), pp.
1089
1096
.
19.
Nayfeh
,
S. A.
,
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
, “
Nonlinear Response of a Taut String to Longitudinal and Transverse End Excitation
,”
J. Vib. Control
,
1
(
3
), pp.
307
334
.
20.
Rowland
,
D. R.
,
2004
, “
Parametric Resonance and Nonlinear String Vibrations
,”
Am. J. Phys.
,
72
(
6
), pp.
758
766
.
21.
Tolonen
,
T.
,
Välimäki
,
V.
, and
Karjalainen
,
M.
,
2000
, “
Modeling of Tension Modulation Nonlinearity in Plucked Strings
,”
IEEE Trans. Speech Audio Process.
,
8
(
3
), pp.
300
310
.
22.
Pakarinen
,
J.
,
Välimäki
,
V.
, and
Karljainen
,
M.
,
2005
, “
Physics-Based Methods for Modeling Nonlinear Vibrating Strings
,”
Acta Acust. Acust.
,
91
(2), pp.
312
325
.
23.
Itö
,
A.
,
1979
, “
Successive Subharmonic Bifurcations and Chaos in a Nonlinear Mathieu Equation
,”
Prog. Theor. Phys.
,
61
(
3
), pp.
815
824
.
24.
Kidachi
,
H.
, and
Onogi
,
H.
,
1997
, “
Note on the Stability of the Nonlinear Mathieu Equation
,”
Prog. Theor. Phys.
,
98
(
4
), pp.
755
773
.
25.
Jordan
,
D. W.
, and
Smith
,
P.
,
2007
,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
,
Oxford University Press
, Oxford, UK.
You do not currently have access to this content.