This paper is dedicated to the analysis of uncertainties affecting the load capability of a 4-pad tilting-pad journal bearing in which the load is applied on a given pad load on pad configuration (LOP). A well-known stochastic method has been used extensively to model uncertain parameters by using the so-called Monte Carlo simulation. However, in the present contribution, the inherent uncertainties of the bearing parameters (i.e., the pad radius, the oil viscosity, and the radial clearance; bearing assembly clearance) are modeled by using a fuzzy dynamic analysis. This alternative methodology seems to be more appropriate when the stochastic process that characterizes the uncertainties is unknown. The analysis procedure is confined to the load capability of the bearing, being generated by the envelopes of the pressure fields developed on each pad. The hydrodynamic supporting forces are determined by considering a nonlinear model, which is obtained from the solution of the Reynolds equation. The most significant results are associated to the changes in the steady-state condition of the bearing due to the reaction forces that are modified according to the uncertainties introduced in the system. Finally, it is worth mentioning that the uncertainty analysis in this case provides relevant information both for design and maintenance of tilting-pad hydrodynamic bearings.

References

1.
Vance
,
J.
,
Zeidan
,
F.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
Wiley
,
Hoboken, NJ
.
2.
Riul
,
J. A.
,
Steffen
, Jr,
V.
, and
Ribeiro
,
C. R.
,
1992
, “
Estudo Teórico de Mancais Hidrodinâmicos Cilíndricos
,”
Rev. Bras. de Ciências Mecânicas
,
14
(
1
), pp.
17
40
.
3.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics—Phenomena, Modeling, & Analysis
,
Wiley
,
New York
.
4.
Capone
,
G.
,
1986
, “
Orbital Motions of Rigid Symmetric Rotor Supported on Journal Bearings
,”
La Mecc. Ital.
,
199
(
1
), pp.
37
46
.
5.
Santos
,
I. F.
, and
Varela
,
A. C.
,
2014
, “
Tilting-Pad Journal Bearings With Active Lubrication Applied as Calibrated Shakers: Theory and Experiment
,”
ASME J. Vib. Acoust.
,
136
(
6
), pp.
1
11
.
6.
Rindi
,
A.
,
Rossin
,
S.
,
Conti
,
R.
,
Frilli
,
A.
,
Galardi
,
E.
,
Meli
,
E.
,
Nocciolini
,
D.
, and
Pugi
,
J.
,
2015
, “
An Efficient Quasi-Three-Dimensional Model of Tilting Pad Journal Bearing for Turbomachinery Applications
,”
ASME J. Vib. Acoust.
,
137
(
6
), pp.
1
17
.
7.
Dmochowski
,
W.
,
Dadouche
,
A.
, and
Fillon
,
M.
,
2008
, “
Numerical Study of the Sensitivity of Tilting-Pad Journal Bearing Performance Characteristics to Manufacturing Tolerances: Dynamic Analysis
,”
Tribol. Trans.
,
51
(
1
), pp.
573
580
.
8.
Mares
,
C.
,
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
2006
, “
Stochastic Model Updating: Part I—Theory and Simulated Example
,”
Mech. Syst. Signal Process.
,
20
(
1
), pp.
1674
1695
.
9.
Marano
,
G. C.
, and
Quaranta
,
G.
,
2008
, “
Fuzzy-Based Robust Structural Optimization
,”
Int. J. Solids Struct.
,
45
(
1
), pp.
3544
3557
.
10.
Zadeh
,
L. A.
,
2015
, “
Fuzzy Logic—A Personal Perspective
,”
Fuzzy Sets Syst.
,
281
(
1
), pp.
4
20
.
11.
Didier
,
J.
,
Faverjon
,
B.
, and
Sinou
,
J. J.
,
2011
, “
Analysing the Dynamic Response of a Rotor System Under Uncertain Parameters Polynomial Chaos Expansion
,”
J. Vib. Control
,
18
(
1
), pp.
712
732
.
12.
Koroishi
,
E. H.
,
Cavalini
,
A. A.
, Jr.
,
de Lima
,
A. M. G.
, and
Steffen
,
V.
, Jr.
,
2012
, “
Stochastics Modeling of Flexible Rotors
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
34
(
1
), pp.
597
603
.
13.
Lara-Molina
,
F. A.
,
Koroishi
,
E. H.
, and
Steffen
,
V.
, Jr.
,
2015
, “
Uncertainty Analysis of Flexible Rotors Considering Fuzzy and Fuzzy Random Parameters
,”
Lat. Am. J. Solid Struct.
,
12
(
10
), pp.
1807
1823
.
14.
Cavalini
,
A. A.
, Jr.
,
Lara-Molina
,
F. A.
,
Sales
,
T. P.
,
Koroishi
,
E. H.
, and
Steffen
,
V.
, Jr.
,
2015
, “
Uncertainty Analysis of a Flexible Rotor Supported by Fluid Film Bearings
,”
Lat. Am. J. Solids Struct.
,
12
(
8
), pp.
1487
1504
.
15.
Möller
,
B.
, and
Beer
,
M.
,
2004
,
Fuzzy Randomness, Uncertainty in Civil Engineering and Computational Mechanics
,
Springer-Verlag
,
New York
.
16.
Vanderplaats
,
G. N.
,
2007
,
Multidiscipline Design Optimization
,
Vanderplaats Research & Development, Inc.
,
Monterey, CA
.
17.
Daniel
,
G. B.
, and
Cavalca
,
K. D.
,
2013
, “
Evaluation of the Thermal Effects in Tilting Pad Bearing
,”
Int. J. Rotating Mach.
,
2013
(
1
), pp.
1
17
.
18.
Russo
,
F. H.
,
1999
, “
Identification of the Characteristics of Hybrid Tilting-Pad Bearings: Theory and Experimentation
,” Ph.D. thesis (Portuguese), Universidade Estadual de Campinas,
Campinas, São Paulo
,
Brazil
.
19.
Lara-Molina
,
F. A.
,
Koroishi
,
E. H.
, and
Steffen
,
V.
, Jr.,
2014
, “
Análise Estrutural Considerando Incertezas Paramétricas Fuzzy
,” Técnicas de Inteligência Computacional com Aplicações em Problemas Inversos de Engenharia.
Omnipax
,
1
(
1
), pp.
133
144
.
20.
Zadeh
,
L.
,
1965
, “
Fuzzy Sets
,”
Inf. Control
,
8
(
1
), pp.
338
353
.
21.
Zadeh
,
L.
,
1968
, “
Fuzzy Sets as Basis for a Theory of Possibility
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
3
28
.
22.
Moens
,
D.
, and
Hanss
,
M.
,
2011
, “
Non-Probabilistic Finite Element Analysis for Parametric Uncertainty Treatment in Applied Mechanics: Recent Advances
,”
Finite Elem. Anal. Des.
,
47
(
1
), pp.
4
16
.
23.
Hanss
,
M.
,
2002
, “
The Transformation Method for the Simulation and Analysis of Systems With Uncertain Parameters
,”
Fuzzy Sets Syst.
,
130
(
1
), pp.
277
289
.
24.
Waltz
,
N. P.
, and
Hanss
,
M.
,
2013
, “
Fuzzy Arithmetical Analysis of Multibody Systems With Uncertainties
,”
Arch. Mech. Eng.
,
1
(
1
), pp.
109
125
.
25.
Möller
,
B.
,
Graf
,
W.
, and
Beer
,
M.
,
2000
, “
Fuzzy Structural Analysis Using α-Level Optimization
,”
Comput. Mech.
,
26
(
1
), pp.
547
565
.
26.
Lobato
,
F. S.
,
Steffen
,
V.
, Jr.
, and
Silva Neto
,
A. J.
,
2010
, “
Solution of Inverse Radiative Transfer Problems in Two-layer Participating Media With Differential Evolution
,”
Inverse Probl. Sci. Eng.
,
18
(
1
), pp.
183
195
.
27.
Storn
,
R.
, and
Price
,
K.
,
1995
, “
Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,”
Int. Comput. Sci. Inst.
,
12
(
1
), pp.
1
16
.
You do not currently have access to this content.