This paper proposes a method for nonlinear damage localization in the beam and plate structures with nonlinear vibration modulation of ultrasonic-guided waves. In the proposed technique, the damaged metal beam and plate are designed to form a cantilever structure. A magnetic system is also involved in the model to control the dynamics of this cantilever structure. The oscillation model exhibits nonlinear vibration that is used to modulate the ultrasonic-guided waves. By utilizing a synchronous phase-locked demodulation technique, the nonlinear reflection profile from the nonlinear scatterer is extracted and employed for localizing the nonlinear damage. The proposed technique has the merits of being perceptive to nonlinear scattering sources, without requiring a damage-free signal, and with enhanced performance at a wide range of frequencies. These merits have been experimentally validated by localizing fatigue crack in a metal beam and imaging simulated contact defect in a metal plate. The proposed technique is suitable in the structural health monitoring (SHM) for nonlinear damage localization in the absence of a baseline signal by ultrasonic-guided waves.

References

1.
Croxford
,
A. J.
,
Wilcox
,
P. D.
,
Wilcox
,
W.
, and
Konstantinidis
,
G.
,
2007
, “
Strategies for Guided Wave Structural Health Monitoring
,”
Proc. R. Soc. London, Ser. A
,
463
(
2087
), pp.
2961
2981
.
2.
Raghavan
,
A.
, and
Cesnik
,
C. E.
,
2007
, “
Review of Guided-Wave Structural Health Monitoring
,”
Shock Vib.
,
39
(
2
), pp.
91
116
.
3.
Michaels
,
J. E.
, and
Michaels
,
T. E.
,
2007
, “
Guided Wave Signal Processing and Image Fusion for In Situ Damage Localization in Plates
,”
Wave Motion
,
44
(
6
), pp.
482
492
.
4.
Michaeis
,
J. E.
, and
Michaels
,
T. E.
,
2006
, “
Enhanced Differential Methods for Guided Wave Phased Array Imaging Using Spatially Distributed Piezoelectric Transducers
,”
AIP Conf. Proc.
,
820
(
A
), pp.
837
844
.
5.
Hong
,
M.
,
Wang
,
Q.
,
Su
,
Z.
, and
Cheng
,
L.
,
2014
, “
In Situ Health Monitoring for Bogie Systems of CRH380 Train on Beijing–Shanghai High-Speed Railway
,”
Mech. Syst. Signal Process.
,
45
(
2
), pp.
378
395
.
6.
Jiao
,
J.
,
Drinkwater
,
B. W.
,
Neild
,
S. A.
, and
Wilcox
,
P. D.
,
2009
, “
Low-Frequency Vibration Modulation of Guided Waves to Image Nonlinear Scatterers for Structural Health Monitoring
,”
Smart Mater. Struct.
,
18
(
6
), p.
065006
.
7.
Solodov
, I
. Y.
,
1998
, “
Ultrasonics of Non-Linear Contacts, Propagation, Reflection and NDE-Applications
,”
Ultrasonics
,
36
(
1
), pp.
383
390
.
8.
Van Den Abeele
,
K.
,
Sutin
,
A.
,
Carmeliet
,
J.
, and
Johnson
,
P. A.
,
2001
, “
Micro-Damage Diagnostics Using Nonlinear Elastic Wave Spectroscopy
,”
NDT&E Int.
,
34
(
4
), pp.
239
248
.
9.
Solodov
, I
. Y.
,
Krohn
,
N.
, and
Busse
,
G.
,
2002
, “
An Example of Nonclassical Acoustic Nonlinearity in Solids
,”
Ultrasonics
,
40
(
1
), pp.
621
625
.
10.
Van Den Abeele
,
K.
,
Johnson
,
P. A.
, and
Sutin
,
A.
,
2000
, “
Nonlinear Elastic Wave Spectroscopy Techniques to Discern Material Damage
,”
Res. Nondestr. Eval.
,
12
(
1
), pp.
17
30
.
11.
Donskoy
,
D.
,
Sutin
,
A.
, and
Ekimov
,
A.
,
2001
, “
Nonlinear Acoustic Interaction on Contact Interfaces and Its Use for Nondestructive Testing
,”
NDT&E Int.
,
34
(
4
), pp.
231
238
.
12.
Kazakov
,
V. V.
,
Sutin
,
A.
, and
Johnson
,
P. A.
,
2002
, “
Sensitive Imaging of an Elastic Nonlinear Wave-Scattering Source in a Solid
,”
Appl. Phys. Lett.
,
81
(
4
), pp.
646
648
.
13.
Ballad
,
E. M.
,
Vezirov
,
S. Y.
,
Pfleiderer
,
K.
,
Solodov
, I
. Y.
, and
Busse
,
G.
,
2004
, “
Nonlinear Modulation Technique for NDE With Air-Coupled Ultrasound
,”
Ultrasonics
,
42
(
1
), pp.
1031
1036
.
14.
Zaitsev
,
V.
,
Nazarov
,
V.
,
Gusev
,
V.
, and
Castagnede
,
B.
,
2006
, “
Novel Nonlinear Modulation Acoustic Technique for Crack Detection
,”
NDT&E Int.
,
39
(
3
), pp.
184
194
.
15.
Kim
,
J. Y.
,
Yakovlev
,
V. A.
, and
Rokhlin
,
S. I.
,
2003
, “
Parametric Modulation Mechanism of Surface Acoustic Wave on a Partially Closed Crack
,”
Appl. Phys. Lett.
,
82
(
19
), pp.
3203
3205
.
16.
He
,
Q.
,
Xu
,
Y.
,
Lu
,
S.
, and
Dai
,
D.
,
2014
, “
Out-of-Resonance Vibration Modulation of Ultrasound With a Nonlinear Oscillator for Nonlinear Crack Detection in a Cantilever Beam
,”
Appl. Phys. Lett.
,
104
(
17
), p.
171903
.
17.
Lu
,
S.
,
He
,
Q.
,
Zhang
,
H.
,
Zhang
,
S.
, and
Kong
,
F.
,
2013
, “
Signal Amplification and Filtering With a Tristable Stochastic Resonance Cantilever
,”
Rev. Sci. Instrum.
,
84
(
2
), p.
026110
.
18.
Aymerich
,
F.
, and
Staszewski
,
W. J.
,
2010
, “
Experimental Study of Impact-Damage Detection in Composite Laminates Using a Cross-Modulation Vibro-Acoustic Technique
,”
Struct. Health Monit.
,
9
(
6
), pp.
541
553
.
19.
He
,
Q.
, and
Lin
,
Y.
,
2016
, “
Assessing the Severity of Fatigue Crack Using Acoustics Modulated by Hysteretic Vibration for a Cantilever Beam
,”
J. Sound Vib.
,
370
(
1
), pp.
306
318
.
20.
Lu
,
S.
,
He
,
Q.
,
Dai
,
D.
, and
Kong
,
F.
,
2015
, “
Periodic Fault Signal Enhancement in Rotating Machine Vibrations Via Stochastic Resonance
,”
J. Vib. Control
,
22
(
20
), pp.
4227
4246
.
21.
Dai
,
D.
, and
He
,
Q.
,
2014
, “
Structure Damage Localization With Ultrasonic Guided Waves Based on a Time–Frequency Method
,”
Signal Process.
,
96
(
A
), pp.
21
28
.
22.
Michaels
,
J. E.
,
2008
, “
Detection Localization and Characterization of Damage in Plates With an In Situ Array of Spatially Distributed Ultrasonic Sensors
,”
Smart Mater. Struct.
,
17
(
3
), p.
035035
.
23.
Hall
,
J. S.
, and
Michaels
,
J. E.
,
2010
, “
Minimum Variance Ultrasonic Imaging Applied to an In Situ Sparse Guided Wave Array
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
57
(
10
), pp.
2311
2323
.
24.
Duffour
,
P.
,
Morbidini
,
M.
, and
Cawley
,
P.
,
2006
, “
A Study of the Vibro-Acoustic Modulation Technique for the Detection of Cracks in Metals
,”
J. Acoust. Soc. Am.
,
119
(
3
), pp.
1463
1475
.
You do not currently have access to this content.