Detection of faults in a gearbox is a first and foremost step before diagnostic and prognostic operations are performed. This paper proposes a novel gearbox fault detection and feature extraction technique. The proposed method adaptively filters the vibration signals emanating from a gearbox. A bandpass filter is designed and optimized through particle swarm optimization (PSO) to maximize kurtosis as an objective function. Gearbox health-related features are extracted from the filtered signals using second-order transient analysis. The method is validated on experimental data collected from a running gearbox in healthy and faulty conditions. The proposed method has successfully identified the faulty conditions inside the gearbox.
Issue Section:
Research Papers
References
1.
Ciandrini
, C.
, Gallieri
, M.
, Giantomassi
, A.
, Ippoliti
, G.
, and Longhi
, S.
, 2010
, “Fault Detection and Prognosis Methods for a Monitoring System of Rotating Electrical Machines
,” IEEE
International Symposium on Industrial Electronics
, July 4–7, pp. 2085
–2090
.2.
Lim
, W. Q.
, Zhang
, D. H.
, Zhou
, J. H.
, Belgi
, P. H.
, and Chan
, H. L.
, 2010
, “Vibration-Based Fault Diagnostic Platform for Rotary Machines
,” IECON
2010–36th Annual Conference on IEEE Industrial Electronics Society
, Nov. 7–10, pp. 1404
–1409
.3.
Vieira
, P.
, Bobi
, M. A. S.
, Gomes
, C. R.
, Gomes
, H. S.
, and Nascimento
, M. P. D.
, 2010
, “Vibration Monitoring of Electric Generators Without Sensor Dedicated
,” IEEE International Conference on Industrial Technology
(ICIT
), pp. 451
–456
.4.
Zaidi
, S. S. H.
, Aviyente
, S.
, Salman
, M.
, Shin
, K. K.
, and Strangas
, E. G.
, 2011
, “Prognosis of Gear Failures in DC Starter Motors Using Hidden Markov Models
,” IEEE Trans. Ind. Electron.
, 58
(5
), pp. 1695
–1706
.5.
Lu
, S.
, He
, Q.
, Zhang
, H.
, and Kong
, F.
, 2015
, “Enhanced Rotating Machine Fault Diagnosis Based on Time-Delayed Feedback Stochastic Resonance
,” ASME J. Vib. Acoust.
, 137
(5
), p. 051008
.6.
Wang
, D.
, Miao
, Q.
, Zhou
, Q.
, and Zhou
, G.
, 2015
, “An Intelligent Prognostic System for Gear Performance Degradation Assessment and Remaining Useful Life Estimation
,” ASME J. Vib. Acoust.
, 137
(2
), p. 021004
.7.
Urbanek
, J.
, Barszcz
, T.
, and Antoni
, J.
, 2013
, “Time–Frequency Approach to Extraction of Selected Second-Order Cyclostationary Vibration Components for Varying Operational Conditions
,” Measurement
, 46
(4
), pp. 1454
–1463
.8.
Antoni
, J.
, 2006
, “The Spectral Kurtosis: A Useful Tool for Characterising Non-Stationary Signals
,” Mech. Syst. Signal Process.
, 20
(2
), pp. 282
–307
.9.
Antoni
, J.
, and Randall
, R. B.
, 2006
, “The Spectral Kurtosis: Application to the Vibratory Surveillance and Diagnostics of Rotating Machines
,” Mech. Syst. Signal Process.
, 20
(2
), pp. 308
–331
.10.
Ghods
, A.
, and Lee
, H.-H.
, 2016
, “Probabilistic Frequency-Domain Discrete Wavelet Transform for Better Detection of Bearing Faults in Induction Motors
,” Neurocomputing
, 188
, pp. 206
–216
.11.
Immovilli
, F.
, Cocconcelli
, M.
, Bellini
, A.
, and Rubini
, R.
, 2009
, “Detection of Generalized-Roughness Bearing Fault by Spectral-Kurtosis Energy of Vibration or Current Signals
,” IEEE Trans. Ind. Electron.
, 56
(11
), pp. 4710
–4717
.12.
Abboud
, D.
, Baudin
, S.
, Antoni
, J.
, Rémond
, D.
, Eltabach
, M.
, and Sauvage
, O.
, 2016
, “The Spectral Analysis of Cyclo-Non-Stationary Signals
,” Mech. Syst. Signal Process.
, 75
, pp. 280
–300
.13.
Assaad
, B.
, Eltabach
, M.
, and Antoni
, J.
, 2014
, “Vibration Based Condition Monitoring of a Multistage Epicyclic Gearbox in Lifting Cranes
,” Mech. Syst. Signal Process.
, 42
(1–2
), pp. 351
–367
.14.
Al-Bugharbee
, H.
, and Trendafilova
, I.
, 2016
, “A Fault Diagnosis Methodology for Rolling Element Bearings Based on Advanced Signal Pretreatment and Autoregressive Modelling
,” J. Sound Vib.
, 369
, pp. 246
–265
.15.
Antoni
, J.
, Bonnardot
, F.
, Raad
, A.
, and El Badaoui
, M.
, 2004
, “Cyclostationary Modelling of Rotating Machine Vibration Signals
,” Mech. Syst. Signal Process.
, 18
(6
), pp. 1285
–1314
.16.
Boungou
, D.
, Guillet
, F.
, Badaoui
, M. E.
, Lyonnet
, P.
, and Rosario
, T.
, 2015
, “Fatigue Damage Detection Using Cyclostationarity
,” Mech. Syst. Signal Process.
, 58–59
, pp. 128
–142
.17.
Lamraoui
, M.
, Thomas
, M.
, and El Badaoui
, M.
, 2014
, “Cyclostationarity Approach for Monitoring Chatter and Tool Wear in High Speed Milling
,” Mech. Syst. Signal Process.
, 44
(1–2
), pp. 177
–198
.18.
Antoni
, J.
, and Randall
, R. B.
, 2002
, “Differential Diagnosis of Gear and Bearing Faults
,” ASME J. Vib. Acoust.
, 124
(2
), pp. 165
–171
.19.
Antoni
, J.
, and Randall
, R. B.
, 2003
, “A Stochastic Model for Simulation and Diagnostics of Rolling Element Bearings With Localized Faults
,” ASME J. Vib. Acoust.
, 125
(3
), pp. 282
–289
.20.
Antoni
, J.
, 2007
, “Fast Computation of the Kurtogram for the Detection of Transient Faults
,” Mech. Syst. Signal Process.
, 21
(1
), pp. 108
–124
.21.
Antoni
, J.
, 2016
, “The Infogram: Entropic Evidence of the Signature of Repetitive Transients
,” Mech. Syst. Signal Process.
, 74
, pp. 73
–94
.22.
Hussain
, S.
, and Gabbar
, H. A.
, 2011
, “A Novel Method for Real Time Gear Fault Detection Based on Pulse Shape Analysis
,” Mech. Syst. Signal Process.
, 25
(4
), pp. 1287
–1298
.23.
Hussain
, S.
, and Gabbar
, H. A.
, 2013
, “Fault Diagnosis in Gearbox Using Adaptive Wavelet Filtering and Shock Response Spectrum Features Extraction
,” Struct. Health Monit.
, 12
(2
), pp. 169
–180
.24.
Soleimani
, A.
, and Khadem
, S. E.
, 2015
, “Early Fault Detection of Rotating Machinery Through Chaotic Vibration Feature Extraction of Experimental Data Sets
,” Chaos, Solitons Fractals
, 78
, pp. 61
–75
.25.
He
, G.
, Ding
, K.
, and Lin
, H.
, 2016
, “Fault Feature Extraction of Rolling Element Bearings Using Sparse Representation
,” J. Sound Vib.
, 366
, pp. 514
–527
.26.
Wang
, H.
, Chen
, J.
, and Dong
, G.
, 2014
, “Feature Extraction of Rolling Bearing's Early Weak Fault Based on EEMD and Tunable Q-Factor Wavelet Transform
,” Mech. Syst. Signal Process.
, 48
(1–2
), pp. 103
–119
.27.
Wang
, S.
, Cai
, G.
, Zhu
, Z.
, Huang
, W.
, and Zhang
, X.
, 2015
, “Transient Signal Analysis Based on Levenberg–Marquardt Method for Fault Feature Extraction of Rotating Machines
,” Mech. Syst. Signal Process.
, 54–55
, pp. 16
–40
.28.
Iba
, H.
, Hasegawa
, Y.
, and Paul
, T. K.
, 2009
, Applied Genetic Programming and Machine Learning
, Taylor and Francis Group
, Boca Raton, FL.29.
Kennedy
, J.
, and Eberhart
, R.
, 1995
, “Particle Swarm Optimization
,” IEEE International Conference on Neural Networks
, Vol. 1944
, pp. 1942
–1948
.30.
Samanta
, B.
, and Nataraj
, C.
, 2009
, “Use of Particle Swarm Optimization for Machinery Fault Detection
,” Eng. Appl. Artif. Intell.
, 22
(2
), pp. 308
–316
.31.
Chen
, D.
, and Zhao
, C.
, 2009
, “Particle Swarm Optimization With Adaptive Population Size and Its Application
,” Appl. Soft Comput.
, 9
(1
), pp. 39
–48
.32.
Chen
, F.
, Tang
, B.
, Song
, T.
, and Li
, L.
, 2014
, “Multi-Fault Diagnosis Study on Roller Bearing Based on Multi-Kernel Support Vector Machine With Chaotic Particle Swarm Optimization
,” Measurement
, 47
, pp. 576
–590
.33.
Pan
, H.
, Wei
, X.
, and Xu
, X.
, 2010
, “Research of Optimal Placement of Gearbox Sensor Based on Particle Swarm Optimization
,” 8th IEEE
International Conference on Industrial Informatics
, July 13–16, pp. 108
–113
.34.
Hongxia
, P.
, Qingfeng
, M.
, and Xiuye
, W.
, 2006
, “Research on Fault Diagnosis of Gearbox Based on Particle Swarm Optimization Algorithm
,” 8th IEEE
International Conference on Mechatronics
, July 3–5, pp. 32
–37
.35.
Zhu
, Z. K.
, Yan
, R.
, Luo
, L.
, Feng
, Z. H.
, and Kong
, F. R.
, 2009
, “Detection of Signal Transients Based on Wavelet and Statistics for Machine Fault Diagnosis
,” Mech. Syst. Signal Process.
, 23
(4
), pp. 1076
–1097
.36.
da Silva
, S. P.
, Filho
, S. L. M. R.
, and Brandão
, L. C.
, 2014
, “Particle Swarm Optimization for Achieving the Minimum Profile Error in Honing Process
,” Precis. Eng.
, 38
(4
), pp. 759
–768
.37.
Meriam
, J. L.
, and Kraige
, L. G.
, 2013
, Engineering Mechanics: Dynamics
, Wiley
, New York.38.
Hassan
, R.
, Cohanim
, B.
, De Weck
, O.
, and Venter
, G.
, 2005, “A Comparison of Particle Swarm Optimization and the Genetic Algorithm
,” AIAA
Paper No. 2015-1897.Copyright © 2017 by ASME
You do not currently have access to this content.