This work proposes a method for controlling vibration using compliant-based actuators. The compliant actuator combines a conventional actuator with elastic elements in a series configuration. The benefits of compliant actuators for vibration control applications, demonstrated in this work, are twofold: (i) vibration reduction over a wide frequency bandwidth by passive control means and (ii) improvement of vibration control performance when active control is applied using the compliant actuator. The vibration control performance is compared with the control performance achieved using the well-known vibration absorber and conventional rigid actuator systems. The performance comparison showed that the compliant actuator provided a better flexibility in achieving vibration control over a certain frequency bandwidth. The passive and active control characteristics of the compliant actuator are investigated, which shows that the control performance is highly dependent on the compliant stiffness parameter. The active control characteristics are analyzed by using the proportional-derivative (PD) control strategy which demonstrated the capability of effectively changing the respective effective stiffness and damping of the system. These attractive dual passive–active control characteristics are therefore advantageous for achieving an effective vibration control system, particularly for controlling the vibration over a specific wide frequency bandwidth.

References

1.
Lage
,
Y. E.
,
Neves
,
M. M.
,
Maia
,
N. M. M.
, and
Tcherniak
,
D.
,
2014
, “
Force Transmissibility Versus Displacement Transmissibility
,”
J. Sound Vib.
,
333
(
22
), pp.
5708
5722
.
2.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Publications
,
Mineola, NY
.
3.
Franchek
,
M. A.
,
Ryan
,
M. W.
, and
Bernhard
,
R. J.
,
1995
, “
Adaptive Passive Vibration Control
,”
J. Sound Vib.
,
189
(
5
), pp.
565
585
.
4.
Karnopp
,
D.
,
Crosby
,
M. J.
, and
Harwood
,
R. A.
,
1974
, “
Vibration Control Using Semi-Active Force Generators
,”
ASME J. Eng. Ind.
,
96
(
2
), pp.
619
626
.
5.
Choi
,
S. B.
,
Seong
,
M. S.
, and
Kim
,
K. S.
,
2009
, “
Vibration Control of an Electrorheological Fluid-Based Suspension System With an Energy Regenerative Mechanism
,”
IMechE J. Automob. Eng.
,
223
(
4
), pp.
459
469
.
6.
Brennan
,
M. J.
,
1997
, “
Vibration Control Using a Tunable Vibration Neutralizer
,”
IMechE J. Mech. Eng. Sci.
,
211
(
2
), pp.
91
108
.
7.
Bonello
,
P.
,
Brennan
,
M. J.
,
Elliott
,
S. J.
,
Vincent
,
J. F. V.
, and
Jeronimidis
,
G.
,
2005
, “
Designs for an Adaptive Vibration Absorber With Variable Stiffness Element
,”
Proc. R. Soc. A.
,
461
(
2064
), pp.
3955
3976
.
8.
Deng
,
H. X.
,
Gong
,
X. L.
, and
Wang
,
L. H.
,
2006
, “
Development of an Adaptive Tuned Vibration Absorber With Magnetorheological Elastomer
,”
Smart Mater. Struct.
,
15
(
5
), pp.
N111
N116
.
9.
Yilmaz
,
C.
, and
Kikuchi
,
N.
,
2006
, “
Analysis and Design of Passive Band-Stop Filter-Type Vibration Isolators for Low-Frequency Applications
,”
J. Sound Vib.
,
291
(3–5), pp.
1004
1028
.
10.
Liu
,
C.
,
Jing
,
X.
, and
Li
,
F.
,
2015
, “
Vibration Isolation Using a Hybrid Lever-Type Isolation System With an X-Shape Supporting Structure
,”
Int. J. Mech. Sci.
,
98
, pp.
169
177
.
11.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(3–5), pp.
678
689
.
12.
Robertson
,
W. S.
,
Kidner
,
M. R. F.
,
Cazzolato
,
B. S.
, and
Zander
,
A. C.
,
2009
, “
Theoretical Design Parameters for a Quasi-Zero Stiffness Magnetic Spring for Vibration Isolation
,”
J. Sound Vib.
,
326
(1–2), pp.
88
103
.
13.
Zhou
,
J.
,
Wang
,
K.
,
Xu
,
D.
,
Ouyang
,
H.
, and
Li
,
Y.
,
2017
, “
A Six-DOF Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts
,”
ASME J. Vib. Acoust.
,
139
(3), p. 034502.
14.
Hansen
,
C.
,
Snyder
,
S.
,
Qiu
,
X.
,
Brooks
,
L.
, and
Moreau
,
D.
,
2012
,
Active Control of Noise and Vibration
, 2nd ed.,
CRC Press
,
Boca Raton, FL
, p.
1553
.
15.
Nakano
,
K.
, and
Suda
,
Y.
,
2004
, “
Combined Type Self-Powered Active Vibration Control of Truck Cabins
,”
Veh. Syst. Dyn.
,
41
(
6
), pp.
449
473
.
16.
Nakano
,
K.
,
Suda
,
Y.
, and
Nakadai
,
S.
,
2003
, “
Self-Powered Active Vibration Control Using a Single Electric Actuator
,”
J. Sound Vib.
,
260
(
2
), pp.
213
235
.
17.
Tang
,
X.
, and
Zuo
,
L.
,
2010
, “
Self-Powered Active Control of Structures With TMDs
,”
IMAC XXVIII Conference and Exposition on Structural Dynamics
, Jacksonville, FL, Feb. 1–4, pp. 1277–1288.http://www.am.chalmers.se/~thab/IMAC/2010/PDFs/Papers/s29p004.pdf
18.
Ni
,
T.
,
Zuo
,
L.
, and
Kareem
,
A.
,
2011
, “
Assessment of Energy Potential and Vibration Mitigation of Regenerative Tuned Mass Dampers on Wind Excited Tall Buildings
,”
ASME
Paper No. DETC2011-48728.
19.
Bäumer
,
R.
, and
Starossek
,
U.
,
2016
, “
Active Vibration Control Using Centrifugal Forces Created by Eccentrically Rotating Masses
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041018
.
20.
Van Ham
,
R.
,
Sugar
,
T. G.
,
Vanderborght
,
B.
,
Hollander
,
K. W.
, and
Lefeber
,
D.
,
2009
, “
Compliant Actuators Design
,”
IEEE Rob. Autom. Mag.
,
16
(
3
), pp.
81
94
.
21.
Robinson
,
D. W.
,
Pratt
,
J. E.
,
Paluska
,
D. J.
, and
Pratt
,
G. A.
,
1999
, “
Series Elastic Actuator Development for a Biomimetic Walking Robot
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Atlanta, GA, Sept. 19–23, pp.
561
568
.
22.
Zhu
,
C.
,
Oda
,
M.
,
Yu
,
H.
,
Watanabe
,
H.
, and
Yan
,
Y.
,
2011
, “
Walking Support and Power Assistance of a Wheelchair Typed Omnidirectional Mobile Robot With Admittance Control
,”
Mobile Robots–Current Trends
,
Z.
Gacovski
, ed.,
InTech
,
Rijeka, Croatia
.
23.
Van der Kooij
,
H.
,
Veneman
,
J. F.
, and
Ekkelenkamp
,
R.
,
2006
, “
Compliant Actuation of Exoskeletons
,”
Mobile Robots: Towards New Applications
,
Aleksandar
Lazinica
, ed.,
InTech
,
Rijeka, Croatia
.
24.
Nef
,
T.
,
Mihelj
,
M.
,
Colombo
,
G.
, and
Riener
,
R.
,
2006
, “
ARMin-Robot for Rehabilitation of the Upper Extremities
,”
IEEE International Conference on Robotics and Automation
(
ROBOT
), Orlando, FL, May 15–19, pp.
3152
3157
.
25.
Yu
,
H.
,
Huang
,
S.
,
Chen
,
G.
,
Toh
,
S. L.
,
Cruz
,
M. S. T. A.
,
Ghorbel
,
Y.
, and
Zhu
,
C.
,
2012
, “
Design and Analysis of a Novel Compact Compliant Actuator With Variable Impedance
,”
IEEE International Conference Robotics and Biomimetics
(
ROBIO
), Guangzhou, China, Dec. 11–14, pp.
1188
1193
.
26.
Pratt
,
G.
, and
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Pittsburgh, PA, Aug. 5–9, Vol.
1
, pp.
399
406
.
27.
Torres-Jara
,
E.
, and
Banks
,
J.
,
2004
, “
A Simple and Scalable Force Actuator
,”
35th International Symposium on Robotics
(
ISR
), Paris, France, Mar. 23–26, pp. 1–5.http://people.csail.mit.edu/etorresj/PubDownload/asimpleandscalableforceactuator50torresjarabanks.pdf
28.
Sensinger
,
J. W.
, and
Weir
,
R.
,
2006
, “
Improvements to Series Elastic Actuators
,”
Second IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications
(
MESA
), Beijing, China, Aug. 13–16, pp.
1
7
.
29.
Pratt
,
J. E.
, and
Krupp
,
B. T.
,
2004
, “
Series Elastic Actuators for Legged Robots
,”
Proc. SPIE
,
5422
, pp.
135
144
.
30.
Pratt
,
J. E.
,
Krupp
,
B. T.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Rob. J.
,
29
(
3
), pp.
234
241
.
31.
Mareta
,
S.
,
Halim
,
D.
, and
Popov
,
A. A.
,
2014
, “
Active Vibration Control Using Compliant-Based Actuators
,”
INTER-NOISE and NOISE-CON Congress and Conference Proceedings
, Melbourne, Australia, Nov. 16–19, Vol. 10, pp. 4541–4550.https://www.acoustics.asn.au/conference_proceedings/INTERNOISE2014/papers/p680.pdf
32.
Williamson
,
M.
,
1995
, “
Series Elastic Actuators
,”
Master thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://groups.csail.mit.edu/lbr/hrg/1995/mattw_ms_thesis.pdf
33.
Robinson
,
D. W.
,
2000
, “
Design and Analysis of Series Elasticity in Closed-Loop Actuator Force Control
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/54838
You do not currently have access to this content.