This paper describes a new parametric method for the development of nonlinear models with parameters identified from an experimental setting. The approach is based on applying a strong nonresonant high-frequency harmonic excitation to the unknown nonlinear system and monitoring its influence on the slow modulation of the system's response. In particular, it is observed that the high-frequency excitation induces a shift in the slow-modulation frequency and a static bias in the mean of the dynamic response. Such changes can be directly related to the amplitude and frequency of the strong excitation offering a unique methodology to identify the unknown nonlinear parameters. The proposed technique is implemented to identify the nonlinear restoring-force coefficients of three experimental systems. Results demonstrate that this technique is capable of identifying the nonlinear parameters with relatively good accuracy.

References

1.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A.
, and
Golinval
,
J.
,
2006
, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
505
592
.
2.
Rice
,
H.
,
1995
, “
Identification of Weakly Non-Linear Systems Using Equivalent Linearization
,”
J. Sound Vib.
,
185
(
3
), pp.
473
481
.
3.
Meyer
,
S.
,
Weiland
,
M.
, and
Link
,
M.
,
2003
, “
Modelling and Updating of Local Non-Linearities Using Frequency Response Residuals
,”
Mech. Syst. Signal Process.
,
17
(
1
), pp.
219
226
.
4.
Ahmadian
,
H.
, and
Zamani
,
A.
,
2009
, “
Identification of Nonlinear Boundary Effects Using Nonlinear Normal Modes
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
2008
2018
.
5.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
,
2003
, “
A Parametric Identification Technique for Single-Degree-of-Freedom Weakly Nonlinear Systems With Cubic Nonlinearities
,”
J. Vib. Control
,
9
(
3–4
), pp.
317
336
.
6.
Jalali
,
H.
,
Bonab
,
B.
, and
Ahmadian
,
H.
,
2011
, “
Identification of Weakly Nonlinear Systems Using Describing Function Inversion
,”
J. Exp. Mech.
,
51
(
5
), p.
739
.
7.
Dick
,
A.
,
Balachandran
,
B.
,
DeVoe
,
D.
, and
Mote
,
C.
,
2006
, “
Parametric Identification of Piezoelectric Microscale Resonators
,”
J. Micromech. Microeng.
,
16
(
8
), pp.
1593
1601
.
8.
Masri
,
S.
, and
Caughey
,
T.
,
1979
, “
A Nonparametric Identification Technique for Nonlinear Dynamic Problems
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
433
447
.
9.
Krauss
,
R. W.
, and
Nayfeh
,
A. H.
,
1999
, “
Experimental Nonlinear Identification of a Single Mode of a Transversely Excited Beam
,”
Nonlinear Dyn.
,
18
(
1
), pp.
69
87
.
10.
Lee
,
G.-M.
,
1997
, “
Estimation of Non-Linear System Parameters Using Higher-Order Frequency Response Functions
,”
Mech. Syst. Signal Process.
,
11
(
2
), pp.
219
228
.
11.
Yasuda
,
K.
, and
Kamiya
,
K.
,
1999
, “
Experimental Identification Technique of Nonlinear Beams in Time Domain
,”
Nonlinear Dyn.
,
18
(
2
), pp.
185
202
.
12.
Mohammad
,
K.
,
Worden
,
K.
, and
Tomlinson
,
G.
,
1992
, “
Direct Parameter Estimation for Linear and Non-Linear Structures
,”
J. Sound Vib.
,
152
(
3
), pp.
471
499
.
13.
Kapania
,
R. K.
, and
Park
,
S.
,
1997
, “
Parametric Identification of Nonlinear Structural Dynamic Systems Using Time Finite Element Method
,”
AIAA J.
,
35
(
4
), pp.
719
726
.
14.
Deng
,
Y.
,
Cheng
,
C. M.
,
Yang
,
Y.
,
Peng
,
Z. K.
,
Yang
,
W. X.
, and
Zhang
,
W. M.
,
2016
, “
Parametric Identification of Nonlinear Vibration Systems Via Polynomial Chirplet Transform
,”
ASME J. Vib. Acoust.
,
138
(
5
), p.
051014
.
15.
Krauss
,
R. W.
, and
Nayfeh
,
A. H.
,
1999
, “
Comparison of Experimental Identification Techniques for a Nonlinear SDOF System
,”
Proc. SPIE
,
3727
, pp.
1182
1187
.
16.
Fahey
,
S.
, and
Nayfeh
,
A. H.
,
1998
, “
Experimental Nonlinear Identification of a Single Structural Mode
,” 16th International Modal Analysis Conference (
IMAC
), Santa Barbara, CA, Feb. 2–5, pp.
737
745
.
17.
Scussel
,
O.
, and
da Silva
,
S.
,
2016
, “
Output-Only Identification of Nonlinear Systems Via Volterra Series
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041012
.
18.
Tcherniak
,
D.
,
1999
, “
The Influence of Fast Excitation on a Continuous System
,”
J. Sound Vib.
,
227
(
2
), pp.
343
360
.
19.
Thomsen
,
J. J.
,
2003
, “
Theories and Experiments on the Stiffening Effect of High-Frequency Excitation for Continuous Elastic Systems
,”
J. Sound Vib.
,
260
(
1
), pp.
117
139
.
20.
Fildin
,
A.
,
2000
, “
On Asymptotic Properties of Systems With Strong and Very Strong High-Frequency Excitation
,”
J. Sound Vib.
,
235
(
2
), pp.
219
233
.
You do not currently have access to this content.