Acoustic liner optimization calls for very efficient simulation methods. A highly efficient and straightforward algorithm is proposed here for the Wiener–Hopf solver, which also takes advantage of the parallel processing capability of the emerging graphics processing unit (GPU) technology. The proposed algorithm adopts a simple concept that re-arranges the formulations of the Wiener–Hopf solver to appropriate matrix forms. This concept was often overlooked but is surprisingly succinct, which leads to a stunningly efficient computational performance. By examining the computational performance of two representative setups (lined duct and duct radiations), the current study shows the superior performance of the proposed algorithm, particularly with GPU. The much improved computational efficiency further suggests the potential of the proposed algorithm and the use of GPU for practical low-noise aircraft engine design and optimization.

References

1.
Tester
,
B.
,
1973
, “
Some Aspects of Sound Attenuation in Lined Ducts Containing Inviscid Mean Flows With Boundary Layers
,”
J. Sound Vib.
,
28
(
2
), pp.
217
245
.
2.
Oliveira
,
J.
, and
Gil
,
P.
,
2014
, “
Sound Propagation in Acoustically Lined Elliptical Ducts
,”
J. Sound Vib.
,
333
(
16
), pp.
3743
3758
.
3.
Bianchi
,
S.
,
Corsini
,
A.
,
Rispoli
,
F.
, and
Sheard
,
A. G.
,
2011
, “
Far-Field Radiation of Tip Aerodynamic Sound Sources in Axial Fans Fitted With Passive Noise Control Features
,”
ASME J. Vib. Acoust.
,
133
(
5
), p.
051001
.
4.
Bogey
,
C.
,
Bailly
,
C.
, and
Juvé
,
D.
,
2002
, “
Computation of Flow Noise Using Source Terms in Linearized Euler's Equations
,”
AIAA J.
,
40
(
2
), pp.
235
243
.
5.
Agarwal
,
A.
,
Morris
,
P. J.
, and
Mani
,
R.
,
2004
, “
Calculation of Sound Propagation in Nonuniform Flows: Suppression of Instability Waves
,”
AIAA J.
,
42
(
1
), pp.
80
88
.
6.
Richter
,
C.
,
Thiele
,
F.
,
Li
,
X.
, and
Zhuang
,
M.
,
2007
, “
Comparison of Time-Domain Impedance Boundary Conditions for Lined Duct Flows
,”
AIAA J.
,
45
(
6
), pp.
1333
1345
.
7.
Huang
,
X.
,
Chen
,
X.
,
Ma
,
Z.
, and
Zhang
,
X.
,
2008
, “
Efficient Computation of Spinning Modal Radiation Through an Engine Bypass Duct
,”
AIAA J.
,
46
(
6
), pp.
1413
1423
.
8.
Casalino
,
D.
, and
Genito
,
M.
,
2008
, “
Turbofan Aft Noise Predictions Based on Lilley's Wave Model
,”
AIAA J.
,
46
(
1
), pp.
84
93
.
9.
Chen
,
X.
,
Huang
,
X.
, and
Zhang
,
X.
,
2009
, “
Sound Radiation From a Bypass Duct With Bifurcations
,”
AIAA J.
,
47
(
2
), pp.
429
436
.
10.
Zhang
,
X.
,
2012
, “
Aircraft Noise and Its Nearfield Propagation Computations
,”
Acta Mech. Sin.
,
28
(
4
), pp.
960
977
.
11.
Jiang
,
H. B.
, and
Huang
,
X.
,
2017
, “
Efficient Impedance Eductions for Liner Tests in Grazing Flow Incidence Tube
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031002
.
12.
Noble
,
B.
,
1958
,
Methods Beased on the Wiener–Hopf Technique for the Solution of Partial Differential Equations
,
Pergamon Press
,
Oxford, UK
, pp.
46
47
.
13.
Munt
,
R. M.
,
1977
, “
The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,”
J. Fluid Mech.
,
83
(
4
), pp.
609
640
.
14.
Rienstra
,
S. W.
,
1984
, “
Acoustic Radiation From a Semi-Infinite Annular Duct in a Uniform Subsonic Mean Flow
,”
J. Sound Vib.
,
94
(
2
), pp.
267
288
.
15.
Rienstra
,
S. W.
,
2007
, “
Acoustic Scattering at a Hard-Soft Lining Transition in a Flow Duct
,”
J. Eng. Math.
,
59
(
4
), pp.
451
475
.
16.
Gabard
,
G.
, and
Astley
,
R.
,
2006
, “
Theoretical Model for Sound Radiation From Annular Jet Pipes: Far- and Near-Field Solutions
,”
J. Fluid Mech.
,
549
, pp.
315
341
.
17.
Liu
,
X.
,
Jiang
,
H. B.
,
Huang
,
X.
, and
Chen
,
S.
,
2016
, “
Theoretical Model of Scattering From Flow Ducts With Semi-Infinite Axial Liner Splices
,”
J. Fluid Mech.
,
786
, pp.
62
83
.
18.
Brandvik
,
T.
, and
Pullan
,
G.
,
2008
, “
Acceleration of a 3D Euler Solver Using Commodity Graphics Hardware
,”
AIAA
Paper No. 2008-607.
19.
Elsen
,
E.
,
LeGresley
,
P.
, and
Darve
,
E.
,
2008
, “
Large Calculation of the Flow Over a Hypersonic Vehicle Using a GPU
,”
J. Comput. Phys.
,
227
(
24
), pp.
10148
10161
.
20.
Rossinelli
,
D.
,
Bergdorf
,
M.
,
Cottet
,
G.-H.
, and
Koumoutsakos
,
P.
,
2010
, “
GPU Accelerated Simulations of Bluff Body Flows Using Vortex Particle Methods
,”
J. Comput. Phys.
,
229
(
9
), pp.
3316
3333
.
21.
Weigel
,
M.
,
2012
, “
Performance Potential for Simulating Spin Models on GPU
,”
J. Comput. Phys.
,
231
(
8
), pp.
3064
3082
.
22.
Salvadore
,
F.
,
Bernardini
,
M.
, and
Botti
,
M.
,
2013
, “
GPU Accelerated Flow Solver for Direct Numerical Simulation of Turbulent Flows
,”
J. Comput. Phys.
,
235
, pp.
129
142
.
23.
Tutkun
,
B.
, and
Edis
,
F.
,
2012
, “
A GPU Application for High-Order Compact Finite Difference Scheme
,”
Comput. Fluids
,
55
, pp.
29
35
.
24.
Komatitsch
,
D.
,
Erlebacher
,
G.
,
Göddeke
,
D.
, and
Michéa
,
D.
,
2010
, “
High-Order Finite-Element Seismic Wave Propagation Modeling With MPI on a Large GPU Cluster
,”
J. Comput. Phys.
,
229
(
20
), pp.
7692
7714
.
25.
Yiu
,
B.
,
Tsang
,
I.
, and
Yu
,
A.
,
2011
, “
GPU-Based Beamformer: Fast Realization of Plane Wave Compounding and Synthetic Aperture Imaging
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
,
58
(
8
), pp.
1698
1705
.
26.
Miao
,
S.
,
Zhang
,
X.
,
Parchment
,
O.
, and
Chen
,
X.
,
2015
, “
A Fast GPU Based Bidiagonal Solver for Computational Aeroacoustics
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
22
39
.
27.
Song
,
W.
, and
Keane
,
A.
,
2007
, “
Surrogate-Based Aerodynamic Shape Optimization of a Civil Aircraft Engine Nacelle
,”
AIAA J.
,
45
(
10
), pp.
2565
2574
.
28.
Press
,
W. H.
,
1996
,
Numerical Recipes in Fortran 77
,
Cambridge Press
,
Cambridge, UK
, pp.
123
158
.
29.
Garland
,
M.
,
Grand
,
S.
,
Nickolls
,
J.
,
Anderson
,
J.
,
Hardwick
,
J.
,
Morton
,
S.
,
Phillips
,
E.
,
Zhang
,
Y.
, and
Volkov
,
V.
,
2008
, “
Parallel Computing Experiences With CUDA
,”
IEEE Micro Mag.
,
28
(
4
), pp.
13
27
.
You do not currently have access to this content.