Abstract

This paper evaluates the effects of uncertainties on the load capacity of a four-pad tilting-pad journal bearing, in which the pad radius, oil viscosity, and radial clearance are considered as uncertain information. The hydrodynamic supporting forces at the bearing pads are obtained by solving the Reynolds equation. In this case, the uncertain parameters are modeled as fuzzy type-2 variables. Fuzzy type-2 sets have been widely used due to their ability to model higher orders of uncertainties as compared with the fuzzy type-1 approach. They allow for inaccurate knowledge to be included in the membership functions used to describe the uncertain parameters. In the present contribution, the so-called α-level optimization was associated with the fuzzy type-2 technique for uncertainty analysis purposes. A sensitivity analysis was also carried out as an additional assessment of the considered uncertain parameters. The numerical results allowed to understand how the uncertain parameters affect the bearing supporting forces for three shaft speeds, namely, 3000, 9000, and 15,000 rpm. It was demonstrated that the effect of the uncertain parameters on the supporting forces increases according to the shaft speed. Additionally, the load capacity revealed to be more sensitive to variations on the oil viscosity and radial clearance than to the pad radius concerning the adopted uncertain interval. Consequently, the obtained results can provide suitable information for the design, manufacturing, and maintenance of tilting-pad journal bearings.

References

1.
Vance
,
J. M.
,
Zeidan
,
F. Y.
, and
Murphy
,
B.
,
2010
,
Machinery Vibration and Rotordynamics
,
John Wiley & Sons
,
New York
.
2.
Cavalini
,
A.
,
Dourado
,
A.
,
Lara-Molina
,
F.
, and
Steffen
,
V.
,
2016
, “
Uncertainty Analysis of a Tilting-Pad Journal Bearing Using Fuzzy Logic Techniques
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061016
. 10.1115/1.4034614
3.
Childs
,
D.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling & Analysis
,
John Wiley & Sons
,
New York
.
4.
Riul
,
J.
,
Steffen
, Jr.,
V.
, and
Ribeiro
,
C.
,
1992
, “
Estudo teórico de mancais hidrodinâmicos cilíndricos
,”
Rev. Bras. de Ciências Mecânicas
,
14
(
1
), pp.
17
40
.
5.
Capone
,
G.
,
1986
, “
Orbital Motions of Rigid Symmetric Rotor Supported on Journal Bearings
,”
La Meccanica Ital.
,
199
(
199
), pp.
37
46
.
6.
Li
,
M.
,
Liu
,
X.
,
Zhu
,
R.
,
Wang
,
X.
,
Bai
,
H.
,
Li
,
F.
,
Li
,
H.
, and
Meng
,
G.
,
2016
, “
Rotor Dynamics Behavior of Tilting Pad Bearing Supported Turbo-Expander Considering Temperature Gradient
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
2
), p.
021004
. 10.1115/1.4030831
7.
Kukla
,
S.
,
Buchhorn
,
N.
, and
Bender
,
B.
,
2017
, “
Design of an Axially Concave Pad Profile for a Large Turbine Tilting-Pad Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
4
), pp.
479
488
. 10.1177/1350650115592919
8.
Ciulli
,
E.
,
Forte
,
P.
,
Libraschi
,
M.
, and
Nuti
,
M.
,
2018
, “
Set-Up of a Novel Test Plant for High Power Turbomachinery Tilting Pad Journal Bearings
,”
Tribol. Int.
,
127
(
1
), pp.
276
287
. 10.1016/j.triboint.2018.06.014
9.
Cavalini
, Jr.,
A. A.
,
Lara-Molina
,
F. A.
,
Sales
,
T. d. P.
,
Koroishi
,
E. H.
, and
Steffen
, Jr.,
V.
,
2015
, “
Uncertainty Analysis of a Flexible Rotor Supported by Fluid Film Bearings
,”
Latin Am. J. Solids Struct.
,
12
(
8
), pp.
1487
1504
. 10.1590/1679-78251582
10.
Dmochowski
,
W.
,
Dadouche
,
A.
, and
Fillon
,
M.
,
2008
, “
Numerical Study of the Sensitivity of Tilting-Pad Journal Bearing Performance Characteristics to Manufacturing Tolerances: Dynamic Analysis
,”
Tribol. Trans.
,
51
(
5
), pp.
573
580
. 10.1080/10402000801947709
11.
Dmochowski
,
W.
, and
Brockwell
,
K.
,
1995
, “
Dynamic Testing of the Tilting Pad Journal Bearing
,”
Tribol. Trans.
,
38
(
2
), pp.
261
268
. 10.1080/10402009508983403
12.
Charki
,
A.
,
Diop
,
K.
,
Champmartin
,
S.
, and
Ambari
,
A.
,
2014
, “
Reliability of a Hydrostatic Bearing
,”
ASME J. Tribol.
,
136
(
1
), p.
011703
. 10.1115/1.4025252
13.
Ruiz
,
R. O.
, and
Diaz
,
S. E.
,
2016
, “
Effect of Uncertainties in the Estimation of Dynamic Coefficients on Tilting Pad Journal Bearings
,”
ASME 2016 International Mechanical Engineering Congress and Exposition
,
Phoenix, AZ
,
Nov. 11–17
,
American Society of Mechanical Engineers
, pp.
V04BT05A030
V04BT05A030
.
14.
Silva
,
H. A. P.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
. 10.1115/1.4041021
15.
Chatzi
,
E. N.
,
Smyth
,
A. W.
, and
Masri
,
S. F.
,
2010
, “
Experimental Application of On-Line Parametric Identification for Nonlinear Hysteretic Systems With Model Uncertainty
,”
Struct. Saf.
,
32
(
5
), pp.
326
337
. 10.1016/j.strusafe.2010.03.008
16.
Couso
,
I.
, and
Sánchez
,
L.
,
2008
, “
Higher Order Models for Fuzzy Random Variables
,”
Fuzzy Sets Syst.
,
159
(
3
), pp.
237
258
. 10.1016/j.fss.2007.09.004
17.
Lara-Molina
,
F. A.
,
Koroishi
,
E. H.
, and
Steffen
, Jr.,
V.
,
2015
, “
Uncertainty Analysis of Flexible Rotors Considering Fuzzy Parameters and Fuzzy-Random Parameters
,”
Latin Am. J. Solids Struct.
,
12
(
10
), pp.
1807
1823
. 10.1590/1679-78251466
18.
Sahab
,
N.
, and
Hagras
,
H.
,
2011
, “
Adaptive Non-Singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications
,”
Int. J. Comput. Commun. Control
,
6
(
3
), pp.
503
529
. 10.15837/ijccc.2011.3
19.
Möller
,
B.
, and
Beer
,
M.
,
2013
,
Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics
,
Springer Science & Business Media
,
Berlin
.
20.
Russo
,
F. H.
,
2000
, “
Identificação das propriedades dinâmicas de mancais segmentados híbridos: teoria e experimento
,” PhD thesis,
Universidade Estadual de Campinas
,
Campinas
.
21.
Daniel
,
G.
, and
Cavalca
,
K.
,
2013
, “
Evaluation of the Thermal Effects in Tilting Pad Bearing
,”
Int. J. Rotat. Mach.
,
2013
(
1
), pp.
17
.
22.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Interval Sensitivity Analysis of Dynamic Response Envelopes for Uncertain Mechanical Structures
,”
III European Conference on Computational Mechanics
,
Lisbon, Portugal
,
June 5–8
,
Springer
, pp.
385
385
.
23.
Moens
,
D.
, and
Vandepitte
,
D.
,
2007
, “
Interval Sensitivity Theory and Its Application to Frequency Response Envelope Analysis of Uncertain Structures
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
21–24
), pp.
2486
2496
. 10.1016/j.cma.2007.01.006
24.
Moore
,
R. E.
,
Kearfott
,
R. B.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
, Vol.
110
,
SIAM
,
Cambridge, UK
.
25.
Cavalini
,
A. A.
,
Lara-Molina
,
F. A.
, and
Steffen
,
V.
,
2017
, “
Dynamic Analysis of a Flexible Rotor Supported by Hydrodynamic Bearings With Uncertain Parameters
,”
Meccanica
,
52
(
11–12
), pp.
2931
2943
. 10.1007/s11012-017-0616-2
26.
Price
,
K.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
,
2006
,
Differential Evolution: A Practical Approach to Global Optimization
,
Springer Science & Business Media
,
Berlin
.
You do not currently have access to this content.