Abstract

Previous studies have proved that the piezoelectric L-shaped beam-mass structure is a good candidate to harvest energy from ambient mechanical vibration. However, most researches merely focused on bending mode of the structure, which only can capture energy from in-plane base excitation. To fully exert the advantages of L-shaped harvesters, this paper will explore their energy harvesting performance on torsional mode with out-of-plane base excitation. The electromechanical coupling governing equation of the L-shaped harvester in torsional mode is derived by applying Gauss's law and the Euler–Bernoulli beam theory with linear assumption, and the analytical results are also validated with experimental results. In addition, the influences of key geometric parameters on the resonance frequency and output voltage of the harvester are also presented. This work demonstrates the feasibility of utilizing torsional mode of the L-shaped unimorph structure to harvest energy from out-of-plane mechanical vibration, which shows the potential of designing multi-directional and multi-frequency L-shaped harvesters.

References

1.
Sodano
,
H. A.
,
Inman
,
D. J.
, and
Park
,
G.
,
2004
, “
A Review of Power Harvesting From Vibration Using Piezoelectric Materials
,”
Shock Vib. Dig.
,
36
(
3
), pp.
197
205
. 10.1177/0583102404043275
2.
Saadon
,
S.
, and
Sidek
,
O.
,
2011
, “
A Review of Vibration-Based MEMS Piezoelectric Energy Harvesters
,”
Energy Convers. Manage.
,
52
(
1
), pp.
500
504
. 10.1016/j.enconman.2010.07.024
3.
Priya
,
S.
,
2007
, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
,
19
(
1
), pp.
167
184
. 10.1007/s10832-007-9043-4
4.
Liu
,
H. C.
,
Zhong
,
J. W.
,
Lee
,
C. K.
,
Lee
,
S. W.
, and
Lin
,
L. W.
,
2018
, “
A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications
,”
Appl. Phys. Rev.
,
5
(
4
), p.
041306
. 10.1063/1.5074184
5.
Ramadan
,
K. S.
,
Sameoto
,
D.
, and
Evoy
,
S.
,
2014
, “
A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers
,”
Smart Mater. Struct.
,
23
(
3
), p.
033001
. 10.1088/0964-1726/23/3/033001
6.
Salmani
,
H.
, and
Rahimi
,
G. H.
,
2018
, “
Study the Effect of Tapering on the Nonlinear Behavior of an Exponentially Varying Width Piezoelectric Energy Harvester
,”
ASME J. Vib. Acoust.
,
140
(
6
), p.
061004
. 10.1115/1.4039932
7.
Xiang
,
H. J.
,
Wang
,
J. J.
,
Shi
,
Z. F.
, and
Zhang
,
Z. W.
,
2013
, “
Theoretical Analysis of Piezoelectric Energy Harvesting From Traffic Induced Deformation of Pavements
,”
Smart Mater. Struct.
,
22
(
9
), p.
095024
. 10.1088/0964-1726/22/9/095024
8.
Wang
,
J. J.
,
Shi
,
Z. F.
,
Xiang
,
H. J.
, and
Song
,
G. B.
,
2015
, “
Modeling on Energy Harvesting From a Railway System Using Piezoelectric Transducers
,”
Smart Mater. Struct.
,
24
(
10
), p.
105017
. 10.1088/0964-1726/24/10/105017
9.
Wang
,
W.
,
Cao
,
J.
,
Bowen
,
C. R.
,
Zhou
,
S.
, and
Lin
,
J.
,
2017
, “
Optimum Resistance Analysis and Experimental Verification of Nonlinear Piezoelectric Energy Harvesting From Human Motions
,”
Energy
,
118
, pp.
221
230
. 10.1016/j.energy.2016.12.035
10.
Izadgoshasb
,
I.
,
Lim
,
Y. Y.
,
Tang
,
L.
,
Padilla
,
R. V.
,
Tang
,
Z. S.
, and
Sedighi
,
M.
,
2019
, “
Improving Efficiency of Piezoelectric Based Energy Harvesting From Human Motions Using Double Pendulum System
,”
Energy Convers. Manage.
,
184
, pp.
559
570
. 10.1016/j.enconman.2019.02.001
11.
Fan
,
K.
,
Zhang
,
Y.
,
Liu
,
H.
,
Cai
,
M.
, and
Tan
,
Q.
,
2019
, “
A Nonlinear Two-Degree-of-Freedom Electromagnetic Energy Harvester for Ultra-Low Frequency Vibrations and Human Body Motions
,”
Renewable Energy
,
138
, pp.
292
302
. 10.1016/j.renene.2019.01.105
12.
Peddigari
,
M.
,
Lim
,
K.-W.
,
Kim
,
M.
,
Park
,
C. H.
,
Yoon
,
W.-H.
,
Hwang
,
G.-T.
, and
Ryu
,
J.
,
2018
, “
Effect of Elastic Modulus of Cantilever Beam on the Performance of Unimorph Type Piezoelectric Energy Harvester
,”
APL Mater.
,
6
(
12
), p.
121107
. 10.1063/1.5070087
13.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2015
, “
Size-Dependent Behaviour of Electrically Actuated Microcantilever-Based MEMS
,”
Int. J. Mech. Mater. Des.
,
12
(
3
), pp.
301
315
. 10.1007/s10999-015-9295-0
14.
Patel
,
R.
,
McWilliam
,
S.
, and
Popov
,
A. A.
,
2014
, “
Optimization of Piezoelectric Cantilever Energy Harvesters Including Non-Linear Effects
,”
Smart Mater. Struct.
,
23
(
8
), p.
085002
. 10.1088/0964-1726/23/8/085002
15.
Zhao
,
Q.
,
Liu
,
Y.
,
Wang
,
L. B.
,
Yang
,
H. L.
, and
Cao
,
D. W.
,
2017
, “
Design Method for Piezoelectric Cantilever Beam Structure Under Low Frequency Condition
,”
Int. J. Pavement Res. Technol.
,
11
(
2
), pp.
153
159
. 10.1016/j.ijprt.2017.08.001
16.
Tsuruta
,
K. M.
,
Rade
,
D. A.
,
Finzi Neto
,
R. M.
, and
Cavalini
,
A. A.
,
2016
, “
Experimental Evaluation of a Cruciform Piezoelectric Energy Harvester
,”
Mech. Syst. Signal Process.
,
79
, pp.
141
148
. 10.1016/j.ymssp.2016.03.005
17.
Liu
,
H. C.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C. G.
,
2012
, “
A New S-Shaped MEMS PZT Cantilever for Energy Harvesting From Low Frequency Vibrations Below 30 Hz
,”
Microsyst. Technol.
,
18
(
4
), pp.
497
506
. 10.1007/s00542-012-1424-1
18.
Su
,
W. J.
, and
Zu
,
J.
,
2013
, “
An Innovative Tri-Directional Broadband Piezoelectric Energy Harvester
,”
Appl. Phys. Lett.
,
103
(
20
), p.
203901
. 10.1063/1.4830371
19.
Wang
,
J. J.
, and
Shi
,
Z. F.
,
2016
, “
Models for Designing Radially Polarized Multilayer Piezoelectric/Elastic Composite Cylindrical Transducers
,”
J. Intell. Mater. Syst. Struct.
,
27
(
4
), pp.
500
511
. 10.1177/1045389X15573341
20.
Kim
,
H. W.
,
Batra
,
A.
,
Priya
,
S.
,
Uchino
,
K.
,
Markley
,
D.
,
Newnham
,
R. E.
, and
Hofmann
,
H. F.
,
2004
, “
Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment
,”
Jpn. J. Appl. Phys.
,
43
(
9A
), pp.
6178
6183
. 10.1143/JJAP.43.6178
21.
Fu
,
X. L.
, and
Liao
,
W. H.
,
2019
, “
Modeling and Analysis of Piezoelectric Energy Harvesting With Dynamic Plucking Mechanism
,”
ASME J. Vib. Acoust.
,
141
(
3
), p.
031002
. 10.1115/1.4042002
22.
Xu
,
J. W.
,
Liu
,
Y. B.
,
Shao
,
W. W.
, and
Feng
,
Z. H.
,
2012
, “
Optimization of a Right-Angle Piezoelectric Cantilever Using Auxiliary Beams With Different Stiffness Levels for Vibration Energy Harvesting
,”
Smart Mater. Struct.
,
21
(
6
), p.
065017
. 10.1088/0964-1726/21/6/065017
23.
Harne
,
R. L.
,
Sun
,
A.
, and
Wang
,
K. W.
,
2016
, “
Leveraging Nonlinear Saturation-Based Phenomena in an L-Shaped Vibration Energy Harvesting System
,”
J. Sound Vib.
,
363
, pp.
517
531
. 10.1016/j.jsv.2015.11.017
24.
Liu
,
D. H.
,
Al-Haik
,
M.
,
Zakaria
,
M.
, and
Hajj
,
M. R.
,
2018
, “
Piezoelectric Energy Harvesting Using L-Shaped Structures
,”
J. Intell. Mater. Syst. Struct.
,
29
(
6
), pp.
1206
1215
. 10.1177/1045389X17730926
25.
Xu
,
J. W.
,
Shao
,
W. W.
,
Kong
,
F. R.
, and
Feng
,
Z. H.
,
2010
, “
Right-Angle Piezoelectric Cantilever With Improved Energy Harvesting Efficiency
,”
Appl. Phys. Lett.
,
96
(
15
), p.
152904
. 10.1063/1.3374880
26.
Liu
,
D. H.
,
Li
,
H. S.
,
Feng
,
H.
,
Yalkun
,
T.
, and
Hajj
,
M. R.
,
2019
, “
A Multi-Frequency Piezoelectric Vibration Energy Harvester With Liquid Filled Container as the Proof Mass
,”
Appl. Phys. Lett.
,
114
(
21
), p.
213902
. 10.1063/1.5089289
27.
Erturk
,
A.
,
Renno
,
J. M.
, and
Inman
,
D. J.
,
2008
, “
Piezoelectric Energy Harvesting From an L-Shaped Beam-Mass Structure
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
529
544
. 10.1177/1045389X08098096
28.
Cao
,
D. X.
,
Leadenham
,
S.
, and
Erturk
,
A.
,
2015
, “
Internal Resonance for Nonlinear Vibration Energy Harvesting
,”
Eur. Phys. J. Spec. Top.
,
224
(
14–15
), pp.
2867
2880
. 10.1140/epjst/e2015-02594-4
29.
Nayfeh
,
A.
,
Balachandran
,
B.
,
Colbert
,
M.
, and
Nayfeh
,
M.
,
1989
, “
An Experimental Investigation of Complicated Responses of a Two-Degree-of-Freedom Structure
,”
ASME J. Appl. Mech.
,
56
(
4
), pp.
960
967
. 10.1115/1.3176197
30.
Cao
,
D. X.
,
Zhang
,
W.
, and
Yao
,
M. H.
,
2010
, “
Analytical and Experimental Studies on Nonlinear Characteristics of an L-Shape Beam Structure
,”
Acta Mech. Sin.
,
26
(
6
), pp.
967
976
. 10.1007/s10409-010-0385-9
31.
Zhao
,
J. H.
,
Zheng
,
X. J.
,
Zhou
,
L.
,
Zhang
,
Y.
,
Sun
,
J.
,
Dong
,
W. J.
,
Deng
,
S. F.
, and
Peng
,
S. T.
,
2012
, “
Investigation of a d15mode PZT-51 Piezoelectric Energy Harvester With a Series Connection Structure
,”
Smart Mater. Struct.
,
21
(
10
), p.
105006
. 10.1088/0964-1726/21/10/105006
32.
Zhu
,
Y. K.
,
Yu
,
Y. G.
,
Li
,
L.
,
Jiang
,
T.
,
Wang
,
X. Y.
, and
Zheng
,
X. J.
,
2016
, “
Modeling and Characterization of Multilayered d15 Mode Piezoelectric Energy Harvesters in Series and Parallel Connections
,”
Smart Mater. Struct.
,
25
(
7
), p.
075027
. 10.1088/0964-1726/25/7/075027
33.
Zhou
,
L.
,
Sun
,
J.
,
Zheng
,
X. J.
,
Deng
,
S. F.
,
Zhao
,
J. H.
,
Peng
,
S. T.
,
Zhang
,
Y.
,
Wang
,
X. Y.
, and
Cheng
H. B.
,
2012
, “
A Model for the Energy Harvesting Performance of Shear Mode Piezoelectric Cantilever
,”
Sens. Actuators, A
,
179
, pp.
185
192
. 10.1016/j.sna.2012.02.041
34.
Malakooti
,
M. H.
, and
Sodano
,
H. A.
,
2015
, “
Piezoelectric Energy Harvesting Through Shear Mode Operation
,”
Smart Mater. Struct.
,
24
(
5
), p.
055005
. 10.1088/0964-1726/24/5/055005
35.
Krommer
,
M.
,
Berik
,
P.
,
Vetyukov
,
Y.
, and
Benjeddou
,
A.
,
2012
, “
Piezoelectric d15 Shear-Response-Based Torsion Actuation Mechanism: An Exact 3D Saint-Venant Type Solution
,”
Int. J. Smart Nano Mater.
,
3
(
2
), pp.
82
102
. 10.1080/19475411.2011.649807
36.
Kulkarni
,
V.
,
Mrad
,
B.
,
Prasad
,
E.
, and
Nemana
,
S.
,
2011
, “
A Shear-Mode Piezoceramic Device for Energy Harvesting Applications
,”
International Workshop Smart Materials, Structures and NDT in Aerospace Conference Canada Montreal
,
Quebec, Canada
,
Nov. 2–4
.
37.
Qian
,
F.
,
Zhou
,
W. L.
,
Kaluvan
,
S.
,
Zhang
,
H. F.
, and
Zuo
,
L.
,
2018
, “
Theoretical Modeling and Experimental Validation of a Torsional Piezoelectric Vibration Energy Harvesting System
,”
Smart Mater. Struct.
,
27
(
4
), p.
045018
. 10.1088/1361-665X/aab160
38.
Zhou
,
S.
,
Hobeck
,
J. D.
,
Cao
,
J.
, and
Inman
,
D. J.
,
2017
, “
Analytical and Experimental Investigation of Flexible Longitudinal Zigzag Structures for Enhanced Multi-Directional Energy Harvesting
,”
Smart Mater. Struct.
,
26
(
3
), p.
035008
. 10.1088/1361-665X/26/3/035008
39.
Wu
,
H.
,
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2014
, “
Feasibility Study of Multi-Directional Vibration Energy Harvesting with a Frame Harvester
,”
Active & Passive Smart Structures & Integrated Systems
,
Bellingham, WA
,
Mar. 10
.
40.
Chen
,
R.
,
Ren
,
L.
,
Xia
,
H.
,
Yuan
,
X.
, and
Liu
,
X.
,
2015
, “
Energy Harvesting Performance of a Dandelion-Like Multi-Directional Piezoelectric Vibration Energy Harvester
,”
Sens. Actuators, A
,
230
, pp.
1
8
. 10.1016/j.sna.2015.03.038
41.
Xu
,
J.
, and
Tang
,
J.
,
2015
, “
Multi-Directional Energy Harvesting by Piezoelectric Cantilever-Pendulum With Internal Resonance
,”
Appl. Phys. Lett.
,
107
(
21
), p.
213902
. 10.1063/1.4936607
42.
Wu
,
Y.
,
Qiu
,
J.
,
Zhou
,
S.
,
Ji
,
H.
,
Chen
,
Y.
, and
Li
,
S.
,
2018
, “
A Piezoelectric Spring Pendulum Oscillator Used for Multi-Directional and Ultra-Low Frequency Vibration Energy Harvesting
,”
Appl. Energy
,
231
, pp.
600
614
. 10.1016/j.apenergy.2018.09.082
43.
Kim
,
I.-H.
,
Jang
,
S.-J.
, and
Jung
,
H.-J.
,
2017
, “
Design and Experimental Study of an L Shape Piezoelectric Energy Harvester
,”
Shock Vib.
,
2017
, pp.
1
8
.
44.
Abdelkefi
,
A.
,
Najar
,
F.
,
Nayfeh
,
A. H.
, and
Ben Ayed
,
S.
,
2011
, “
An Energy Harvester Using Piezoelectric Cantilever Beams Undergoing Coupled Bending-Torsion Vibrations
,”
Smart Mater. Struct.
,
20
(
11
), p.
115007
. 10.1088/0964-1726/20/11/115007
45.
Swanson
,
S. R.
,
1998
, “
Torsion of Laminated Rectangular Rods
,”
Compos. Struct.
,
42
(
1
), pp.
23
31
. 10.1016/S0263-8223(98)00055-5
46.
Christian
,
Z.
,
Markus
,
Z.
, and
Michael
,
K.
,
2011
, “
Piezoelectric Torsional Sensors and Actuators—A Computational Study
,”
Eccomas Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
,
Corfu, Greece
,
May 25–28
.
47.
Erturk
,
A.
,
Tarazaga
,
P. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2009
, “
Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams
,”
ASME J. Vib. Acoust.
,
131
(
1
), p.
011010
. 10.1115/1.2981094
You do not currently have access to this content.