Abstract

Although rotors are simplified to be axisymmetric in rotordynamic models, many rotors in the industry are actually non-axisymmetric. Several authors have proposed methods using 3D finite element, rotordynamic models, but more efficient approaches for handling a large number of degrees-of-freedom (DOF) are needed. This task becomes particularly acute when considering parametric excitation that results from asymmetry in the rotating frame. This paper presents an efficient rotordynamic stability approach for non-axisymmetric rotor-bearing systems with complex shapes using three-dimensional solid finite elements. The 10-node quadratic tetrahedron element is used for the finite element formulation of the rotor. A rotor-bearing system, matrix differential equation is derived in the rotor-fixed coordinate system. The system matrices are reduced by using Guyan reduction. The current study utilizes the Floquet theory to determine the stability of solutions for parametrically excited rotor-bearing systems. Computational efficiency is improved by discretization and parallelization, taking advantage of the discretized monodromy matrix of Hsu's method. The method is verified by an analytical model with the Routh–Hurwitz stability criteria, and by direct time-transient, numerical integration for large order models. The proposed and Hill's methods are compared with respect to accuracy and computational efficiency, and the results indicate the limitations of Hill's method when applied to 3D solid rotor-bearing systems. A parametric investigation is performed for an asymmetric Root's blower type shaft, varying bearing asymmetry and bearing damping.

References

1.
Palazzolo
,
A. B.
,
2016
,
Vibration Theory and Applications With Finite Elements and Active Vibration Control
,
Wiley
,
Chichester, UK
.
2.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
3.
Nandi
,
A.
, and
Neogy
,
S.
,
2001
, “
Modelling of Rotors With Three-Dimensional Solid Finite Elements
,”
J. Strain Anal. Eng. Des.
,
36
(
4
), pp.
359
371
. 10.1243/0309324011514539
4.
Chatelet
,
E.
,
D'Ambrosio
,
F.
, and
Jascquet-Richardet
,
G.
,
2005
, “
Toward Global Modelling Approaches for Dynamic Analyses of Rotating Assemblies of Turbomachines
,”
J. Sound Vib.
,
282
(
1–2
), pp.
163
178
. 10.1016/j.jsv.2004.02.035
5.
Combescure
,
D.
, and
Lazarus
,
A.
,
2008
, “
Refined Finite Element Modelling for the Vibration Analysis of Large Rotating Machines: Application to the Gas Turbine Modular Helium Reactor Power Conversion Unit
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1262
1280
. 10.1016/j.jsv.2008.04.025
6.
Chaudhry
,
J. A.
,
2011
, “
3-D Finite Element Analysis of Rotors in Gas Turbines, Steam Turbines and Axial Pumps Including Blade Vibrations
,” Ph.D. thesis,
University of Virginia
,
Charlottesville, VA
.
7.
Black
,
H. F.
,
1969
, “
Parametrically Excited Lateral Vibrations of an Asymmetric Slender Shaft in Asymmetrically Flexible Bearings
,”
Proc. Inst. Mech. Eng. Part C
,
11
(
1
), pp.
57
67
. 10.1243/jmes_jour_1969_011_008_02
8.
Hsu
,
C. S.
,
1963
, “
On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom
,”
ASME J. Appl. Mech.
,
85
(
Series E
), pp.
367
372
. 10.1115/1.3636563
9.
Genta
,
G.
,
1988
, “
Whirling of Unsymmetrical Rotors: A Finite Element Approach Based on Complex Coordinates
,”
J. Sound Vib.
,
124
(
1
), pp.
27
53
. 10.1016/S0022-460X(88)81404-4
10.
Oncescu
,
F.
,
Lakis
,
A. A.
, and
Ostiguy
,
G.
,
2001
, “
Investigation of the Stability and Steady State Response of Asymmetric Rotors, Using Finite Element Formulation
,”
J. Sound Vib.
,
245
(
2
), pp.
303
328
. 10.1006/jsvi.2001.3570
11.
Nandi
,
A.
, and
Neogy
,
N.
,
2005
, “
An Efficient Scheme for Stability Analysis of Finite Element Asymmetric Rotor Models in a Rotating Frame
,”
Finite Elem. Anal. Des.
,
41
(
14
), pp.
1343
1364
. 10.1016/j.finel.2005.03.001
12.
Lazarus
,
A.
,
Prabel
,
B.
, and
Combescure
,
D.
,
2010
, “
A 3D Finite Element Model for the Vibration Analysis of Asymmetric Rotating Machines
,”
J. Sound Vib.
,
329
(
18
), pp.
3780
3797
. 10.1016/j.jsv.2010.03.029
13.
Ma
,
W. M.
,
Wang
,
J. J.
, and
Wang
,
Z.
,
2015
, “
Frequency and Stability Analysis Method of Asymmetric Anisotropic Rotor-Bearing System Based on Three-Dimensional Solid Finite Element Method
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
102502
. 10.1115/1.4029968
14.
Tai
,
W. C.
, and
Shen
,
I. Y.
,
2015
, “
Closed-Form Vibration Response of a Special Class of Spinning, Cyclic Symmetric Rotor-Bearing-Housing Systems
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061011
. 10.1115/1.4031314
15.
Hsu
,
C. S.
,
1974
, “
On Approximating a General Linear Periodic System
,”
J. Math. Anal. Appl.
,
45
(
1
), pp.
234
251
. 10.1016/0022-247X(74)90134-6
16.
Cook
,
R. D.
,
Malkus
,
D. S.
,
Plesha
,
M. E.
, and
Witt
,
R. J.
,
2002
,
Concepts and Applications of Finite Element Analysis
,
John Wiley & Sons. Inc.
,
NJ
.
17.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
. 10.2514/3.2874
18.
Floquet
,
G.
,
1883
, “
Sur les équations Différentielles Linéaires à Coefficients Périodiques
,”
Annales de l'École Normale Supérieure
,
12
(
2
), pp.
47
88
. 10.24033/asens.220
19.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics
,
John Wiley & Sons, Inc.
,
NJ
.
20.
Thomas
,
O.
,
Lazarus
,
A.
, and
Touze
,
C.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Oscillations of Non-Linear Structural Systems
,”
Proceedings of the IDETC-CIE
,
Montreal, Quebec, Canada
,
Aug. 15–18, 2010
,
ASME
Paper No. DETC2010-28407. 10.1115/DETC2010-28407
21.
Loewy
,
R. G.
, and
Piarulli
,
V. J.
,
1969
,
Dynamics of Rotating Shafts
,
The Shock and Vibration Information Center, Naval Research Laboratory
,
Washington, DC
.
22.
Someya
,
T.
,
1931
,
Journal-Bearing Databook
,
Springer-Verlag Berlin/Heidelberg GmbH
.
23.
Bucur
,
A.
,
2009
, “
Linear Systems, MIT Department of Mathematics
,” Accessed 2018, http://www-math.mit.edu/∼alina/18.03/linsys.pdf.
24.
Bishop
,
R.
, and
Parkinson
,
A.
,
1965
, “
Second Order Vibrations of Flexible Shafts
,”
Philos. Trans. R. Soc. A
,
259
(
1095
), pp.
1
31
. 10.1098/rsta.1965.0052
You do not currently have access to this content.