Abstract

The effect of uncertainties in material and geometric parameters on the acoustic performance of a viscoelastic coating is investigated. The model of the coating comprises a structure conventionally used in underwater applications, namely a soft elastic matrix embedded with periodic arrangements of voids. To investigate the effect of uncertainties on the acoustic performance of the coating, stochastic models based on the non-intrusive polynomial chaos expansion (PCE) method and Monte Carlo (MC) simulations are developed. The same analytical formulation of the acoustic coating is employed in both stochastic models. In the PCE method, the analytical model is transformed into a computationally efficient surrogate model using stochastic collocation. The effect of uncertainty in an individual geometric or material parameter on the acoustic performance of the coating is investigated by examining the mean, envelopes, and probability distribution of the monopole resonance frequency and sound transmission through the coating. The effect of variation in combinations of geometric and material parameters is then examined. Uncertainty in the geometric parameters is observed to have greater impact on the resonance frequency of the voids and sound transmission through the coating compared to uncertainty in the material properties.

References

1.
Lu
,
M.-H.
,
Feng
,
L.
, and
Chen
,
Y.-F.
,
2009
, “
Phononic Crystals and Acoustic Metamaterials
,”
Mater. Today
,
12
(
12
), pp.
34
42
. 10.1016/s1369-7021(09)70315-3
2.
Deymier
,
P. A.
,
2013
,
Acoustic Metamaterials and Phononic Crystals
, Vol.
173
,
Springer-Verlag
,
Berlin Heidelberg
.
3.
Ma
,
G.
, and
Sheng
,
P.
,
2016
, “
Acoustic Metamaterials: From Local Resonances to Broad Horizons
,”
Sci. Adv.
,
2
(
2
), p.
e1501595
. 10.1126/sciadv.1501595
4.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), p.
16001
. 10.1038/natrevmats.2016.1
5.
Huang
,
G.
, and
Sun
,
C.
,
2010
, “
Band Gaps in a Multiresonator Acoustic Metamaterial
,”
ASME J. Vib. Acoust.
,
132
(
3
), p.
031003
. 10.1115/1.4000784
6.
Xia
,
B.
,
Li
,
L.
,
Liu
,
J.
, and
Yu
,
D.
,
2018
, “
Acoustic Metamaterial With Fractal Coiling Up Space for Sound Blocking in a Deep Subwavelength Scale
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011011
. 10.1115/1.4037514
7.
Yang
,
J. J.
,
Huang
,
M.
,
Cai
,
G. H.
,
Xie
,
R. S.
, and
Yang
,
J.
,
2013
, “
Design of Acoustic Metamaterial Devices Based on Inverse Method
,”
ASME J. Vib. Acoust.
,
135
(
5
), p.
051024
. 10.1115/1.4024559
8.
Zhu
,
R.
,
Huang
,
G.
, and
Hu
,
G.
,
2012
, “
Effective Dynamic Properties and Multi-Resonant Design of Acoustic Metamaterials
,”
ASME J. Vib. Acoust.
,
134
(
3
), p.
031006
. 10.1115/1.4005825
9.
Liu
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2005
, “
Analytic Model of Phononic Crystals With Local Resonances
,”
Phys. Rev. B
,
71
(
1
), p.
014103
. 10.1103/PhysRevB.71.014103
10.
Fang
,
N.
,
Xi
,
D.
,
Xu
,
J.
,
Ambati
,
M.
,
Srituravanich
,
W.
,
Sun
,
C.
, and
Zhang
,
X.
,
2006
, “
Ultrasonic Metamaterials With Negative Modulus
,”
Nat. Mater.
,
5
(
6
), pp.
452
456
. 10.1038/nmat1644
11.
Ding
,
Y.
,
Liu
,
Z.
,
Qiu
,
C.
, and
Shi
,
J.
,
2007
, “
Metamaterial With Simultaneously Negative Bulk Modulus and Mass Density
,”
Phys. Rev. Lett.
,
99
(
9
), p.
093904
. 10.1103/PhysRevLett.99.093904
12.
Lai
,
Y.
,
Wu
,
Y.
,
Sheng
,
P.
, and
Zhang
,
Z.-Q.
,
2011
, “
Hybrid Elastic Solids
,”
Nat. Mater.
,
10
(
8
), pp.
620
624
. 10.1038/nmat3043
13.
Audoly
,
C.
,
1994
, “
Acoustic Analysis of Panels Made With Viscoelastic Materials Containing Resonant Cavities
,”
Acta Acust.
,
2
, pp.
393
402
.
14.
Brunet
,
T.
,
Leng
,
J.
, and
Mondain-Monval
,
O.
,
2013
, “
Soft Acoustic Metamaterials
,”
Science
,
342
(
6156
), pp.
323
324
. 10.1126/science.1241727
15.
Leroy
,
V.
,
Bretagne
,
A.
,
Fink
,
M.
,
Willaime
,
H.
,
Tabeling
,
P.
, and
Tourin
,
A.
,
2009
, “
Design and Characterization of Bubble Phononic Crystals
,”
Appl. Phys. Lett.
,
95
(
17
), p.
171904
. 10.1063/1.3254243
16.
Brunet
,
T.
,
Merlin
,
A.
,
Mascaro
,
B.
,
Zimny
,
K.
,
Leng
,
J.
,
Poncelet
,
O.
,
Aristégui
,
C.
, and
Mondain-Monval
,
O.
,
2015
, “
Soft 3D Acoustic Metamaterial With Negative Index
,”
Nat. Mater.
,
14
(
4
), pp.
384
388
. 10.1038/nmat4164
17.
Leroy
,
V.
,
Strybulevych
,
A.
,
Scanlon
,
M.
, and
Page
,
J.
,
2009
, “
Transmission of Ultrasound Through a Single Layer of Bubbles
,”
Eur. Phys. J. E
,
29
(
1
), pp.
123
130
. 10.1140/epje/i2009-10457-y
18.
Leroy
,
V.
,
Strybulevych
,
A.
,
Lanoy
,
M.
,
Lemoult
,
F.
,
Tourin
,
A.
, and
Page
,
J. H.
,
2015
, “
Superabsorption of Acoustic Waves With Bubble Metascreens
,”
Phys. Rev. B
,
91
(
2
), p.
020301
. 10.1103/PhysRevB.91.020301
19.
Skvortsov
,
A.
,
MacGillivray
,
I.
,
Sharma
,
G. S.
, and
Kessissoglou
,
N.
,
2019
, “
Sound Scattering by a Lattice of Resonant Inclusions in a Soft Medium
,”
Phys. Rev. E
,
99
(
6
), p.
063006
. 10.1103/PhysRevE.99.063006
20.
Liang
,
B.
,
Zou
,
X.
, and
Cheng
,
J.
,
2008
, “
Effective Medium Method for Sound Propagation in a Soft Medium Containing Air Bubbles
,”
J. Acoust. Soc. Am.
,
124
(
3
), pp.
1419
1429
. 10.1121/1.2957931
21.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2017
, “
Acoustic Performance of Gratings of Cylindrical Voids in a Soft Elastic Medium With a Steel Backing
,”
J. Acoust. Soc. Am.
,
141
(
6
), pp.
4694
4704
. 10.1121/1.4986941
22.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2019
, “
Acoustic Performance of Periodic Steel Cylinders Embedded in a Viscoelastic Medium
,”
J. Sound Vib.
,
443
, pp.
652
665
. 10.1016/j.jsv.2018.12.013
23.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2017
, “
Sound Transmission Through a Periodically Voided Soft Elastic Medium Submerged in Water
,”
Wave Motion
,
70
, pp.
101
112
. 10.1016/j.wavemoti.2016.10.006
24.
Sharma
,
G. S.
,
Skvortsov
,
A.
,
MacGillivray
,
I.
, and
Kessissoglou
,
N.
,
2019
, “
Sound Absorption by Rubber Coatings With Periodic Voids and Hard Inclusions
,”
Appl. Acoust.
,
143
, pp.
200
210
. 10.1016/j.apacoust.2018.09.003
25.
Ivansson
,
S. M.
,
2006
, “
Sound Absorption by Viscoelastic Coatings With Periodically Distributed Cavities
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3558
3567
. 10.1121/1.2190165
26.
Hinders
,
M.
,
Rhodes
,
B.
, and
Fang
,
T.
,
1995
, “
Particle-Loaded Composites for Acoustic Anechoic Coatings
,”
J. Sound Vib.
,
185
(
2
), pp.
219
246
. 10.1006/jsvi.1995.0377
27.
Hladky-Hennion
,
A.-C.
, and
Decarpigny
,
J.-N.
,
1991
, “
Analysis of the Scattering of a Plane Acoustic Wave by a Doubly Periodic Structure Using the Finite Element Method: Application to Alberich Anechoic Coatings
,”
J. Acoust. Soc. Am.
,
90
(
6
), pp.
3356
3367
. 10.1121/1.401395
28.
Calvo
,
D. C.
,
Thangawng
,
A. L.
,
Layman
,
C. N.
, Jr.
,
Casalini
,
R.
, and
Othman
,
S. F.
,
2015
, “
Underwater Sound Transmission Through Arrays of Disk Cavities in a Soft elastic Medium
,”
J. Acoust. Soc. Am.
,
138
(
4
), pp.
2537
2547
. 10.1121/1.4931446
29.
Oladyshkin
,
S.
, and
Nowak
,
W.
,
2012
, “
Data-Driven Uncertainty Quantification Using the Arbitrary Polynomial Chaos Expansion
,”
Reliab. Eng. Syst. Saf.
,
106
, pp.
179
190
. 10.1016/j.ress.2012.05.002
30.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
31.
Henneberg
,
J.
,
Nieto
,
J. G.
,
Sepahvand
,
K.
,
Gerlach
,
A.
,
Cebulla
,
H.
, and
Marburg
,
S.
,
2020
, “
Periodically Arranged Acoustic Metamaterial in Industrial Applications: The Need for Uncertainty Quantification
,”
Appl. Acoust.
,
157
, p.
107026
. 10.1016/j.apacoust.2019.107026
32.
Zhang
,
X.
,
He
,
J.
,
Takezawa
,
A.
, and
Kang
,
Z.
,
2018
, “
Robust Topology Optimization of Phononic Crystals With Random Field Uncertainty
,”
Int. J. Numer. Methods Eng.
,
115
(
9
), pp.
1154
1173
. 10.1002/nme.5839
33.
Lei
,
J.-R.
,
Xie
,
L.-X.
, and
Liu
,
J.
,
2017
, “
Band Structure Analysis of Phononic Crystals Based on the Chebyshev Interval Method
,”
J. Acoust. Soc. Am.
,
142
(
5
), pp.
3234
3244
. 10.1121/1.5011952
34.
Li
,
E.
,
He
,
Z.
,
Hu
,
J.
, and
Long
,
X.
,
2017
, “
Volumetric Locking Issue With Uncertainty in the Design of Locally Resonant Acoustic Metamaterials
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
128
148
. 10.1016/j.cma.2017.06.005
35.
Jia
,
Z.
,
Chen
,
Y.
,
Yang
,
H.
, and
Wang
,
L.
,
2018
, “
Designing Phononic Crystals With Wide and Robust Band Gaps
,”
Phys. Rev. Appl.
,
9
(
4
), p.
044021
. 10.1103/PhysRevApplied.9.044021
36.
He
,
Z.
,
Hu
,
J.
, and
Li
,
E.
,
2018
, “
An Uncertainty Model of Acoustic Metamaterials With Random Parameters
,”
Comput. Mech.
,
62
(
5
), pp.
1023
1036
. 10.1007/s00466-018-1548-y
37.
Xia
,
B.
,
Qin
,
Y.
,
Chen
,
N.
,
Yu
,
D.
, and
Jiang
,
C.
,
2017
, “
Optimization of Uncertain Acoustic Metamaterial With Helmholtz Resonators Based on Interval Model
,”
Sci. China Technol. Sci.
,
60
(
3
), pp.
385
398
. 10.1007/s11431-016-0562-1
38.
Chen
,
J.
,
Xia
,
B.
, and
Liu
,
J.
,
2018
, “
A Sparse Polynomial Surrogate Model for Phononic Crystals With Uncertain Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
681
703
. 10.1016/j.cma.2018.05.001
39.
Pan
,
W.
,
Tang
,
G.
, and
Tang
,
J.
,
2018
, “
Evaluation of Uncertainty Effects to Band Gap Behavior of Circuitry-Integrated Piezoelectric Metamaterial Using Order-Reduced Analysis
,”
J. Intell. Mater. Syst. Struct.
,
29
(
12
), pp.
2677
2692
. 10.1177/1045389X18778359
40.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
. 10.1137/S1064827501387826
41.
McCarthy
,
P.
,
Sayre
,
J.
, and
Shawyer
,
B.
,
1993
, “
Generalized Legendre Polynomials
,”
J. Math. Anal. Appl.
,
177
(
2
), pp.
530
537
. 10.1006/jmaa.1993.1275
42.
Isukapalli
,
S.
,
Roy
,
A.
, and
Georgopoulos
,
P.
,
1998
, “
Stochastic Response Surface Methods (SRSMs) for Uncertainty Propagation: Application to Environmental and Biological Systems
,”
Risk Anal.
,
18
(
3
), pp.
351
363
. 10.1111/j.1539-6924.1998.tb01301.x
43.
Huang
,
S.
,
Mahadevan
,
S.
, and
Rebba
,
R.
,
2007
, “
Collocation-Based Stochastic Finite Element Analysis for Random Field Problems
,”
Probab. Eng. Mech.
,
22
(
2
), pp.
194
205
. 10.1016/j.probengmech.2006.11.004
44.
Yang
,
J.
,
Faverjon
,
B.
,
Dureisseix
,
D.
,
Swider
,
P.
,
Marburg
,
S.
,
Peters
,
H.
, and
Kessissoglou
,
N.
,
2016
, “
Prediction of the Intramembranous Tissue Formation During Perisprosthetic Healing With Uncertainties. Part 2. Global Clinical Healing Due to Combination of Random Sources
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
13
), pp.
1387
1394
. 10.1080/10255842.2016.1143465
45.
Faverjon
,
B.
, and
Ghanem
,
R.
,
2006
, “
Stochastic Inversion in Acoustic Scattering
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3577
3588
. 10.1121/1.2200149
You do not currently have access to this content.