Abstract

The Hyperloop transportation system paradigm has gained increasing attention in the last years due to its potential advantages in technology, territory, and infrastructure. From an engineering point of view, it would lead to fast, safe, efficient transportation of passengers and cargo. The stability of the electrodynamic levitation system represents a key enabling aspect of Hyperloop. In this context, the state of the art presents numerous attempts to stabilize these systems without definitive guidelines on how to attain proper, stable behavior. Furthermore, research has provided extensive literature in the context of electrodynamic bearings, which requires proper interpretation and generalization into the translational domain. In this paper, we address the stabilization of levitation systems by reproducing the strong interaction between the electrodynamic phenomenon and the mechanical domain. A novel lumped-parameter model with a multiple-branch circuit is proposed and tuned through finite-element simulations to replicate the electrodynamic behavior. The multi-domain equations are linearized and the unstable nature of the levitation system is identified and discussed. Then, a suitable method to add damping and optimize stability is studied. Finally, the linearized model is compared with the nonlinear representation to validate the followed approach.

References

1.
Marelli
,
L.
,
Tsakalidis
,
A.
,
Gkoumas
,
K.
,
Haq
,
A.
,
Grosso
,
M.
, and
Pekar
,
F.
,
2017
, “
Strategic Transport Research and Innovation Agenda (STRIA) Roadmap Factsheets
,” https://ec.europa.eu/jrc/en/publication/strategic-transport-research-and-innovation-agenda-stria-roadmap-factsheets
2.
Burkhard
,
N.
,
2014
, “
Why Invent the Hyperloop?
”, http://large.stanford.edu/courses/2014/ph240/burkhard2/
4.
Post
,
R. F.
, and
Ryutov
,
D.
,
1996
, “
The Inductrack Concept: A New Approach to Magnetic Levitation
,”
Lawrence Livermore National Lab
.,
CA
,
Technical Report UCRL-ID-124115
,
May
.
5.
Kusada
,
S.
,
Igarashi
,
M.
,
Nemoto
,
K.
,
Okutomi
,
T.
,
Hirano
,
S.
,
Kuwano
,
K.
,
Tominaga
,
T.
,
Terai
,
M.
,
Kuriyama
,
T.
,
Tasaki
,
K.
,
Tosaka
,
T.
,
Marukawa
,
K.
,
Hanai
,
S.
,
Yamashita
,
T.
,
Yanase
,
Y.
,
Nakao
,
H.
, and
Yamaji
,
M.
,
2007
, “
The Project Overview of the HTS Magnet for Superconducting Maglev
,”
IEEE Trans. Appl. Superconduct.
,
17
(
2
), pp.
2111
2116
. 10.1109/TASC.2007.899691
6.
Tonoli
,
A.
,
2007
, “
Dynamic Characteristics of Eddy Current Dampers and Couplers
,”
J. Sound Vib.
,
301
(
3–5
), pp.
576
591
. 10.1016/j.jsv.2006.10.015
7.
Tonoli
,
A.
,
Amati
,
N.
,
Impinna
,
F.
, and
Detoni
,
J. G.
,
2011
, “
A Solution for the Stabilization of Electrodynamic Bearings: Modeling and Experimental Validation
,”
ASME J. Vib. Acoust.
,
133
(
2
), p.
021004
. 10.1115/1.4002959
8.
Impinna
,
F.
,
Detoni
,
J. G.
,
Amati
,
N.
, and
Tonoli
,
A.
,
2013
, “
Passive Magnetic Levitation of Rotors on Axial Electrodynamic Bearings
,”
IEEE Trans. Magn.
,
49
(
1
), pp.
599
608
. 10.1109/TMAG.2012.2209124
9.
Detoni
,
J.
,
Impinna
,
F.
,
Tonoli
,
A.
, and
Amati
,
N.
,
2012
, “
Unified Modelling of Passive Homopolar and Heteropolar Electrodynamic Bearings
,”
J. Sound Vib.
,
331
(
19
), pp.
4219
4232
. 10.1016/j.jsv.2012.04.036
10.
Filatov
,
A.
, and
Maslen
,
E.
,
2001
, “
Passive Magnetic Bearing for Flywheel Energy Storage Systems
,”
IEEE Trans. Magn.
,
37
(
6
), pp.
3913
3924
. 10.1109/20.966127
11.
Lembke
,
T. A.
,
2005
, “
Design and Analysis of a Novel Low Loss Homopolar Electrodynamic Bearing
,” Ph.D. thesis,
School of Electrical Engineering
,
KTH, Stockholm, Sweden
.
12.
Lembke
,
T. A.
,
2014
, “
Review of Electrodynamic Bearings
,”
ISMB14, 14th International Symposium on Magnetic Bearings
,
Linz, Austria
,
Aug. 11–14
.
13.
Lembke
,
T. A.
,
2008
, “
Electrodynamic Actuator
,”
Patent application WO2010064978
.
14.
Lembke
,
T. A.
,
2012
, “
1-DOF Bearing Arrangement with Passive Radial Bearings and Highly Efficient Integrated Electrodynamic Dampers, EDD
,”
ISMB13, 13th International Symposium on Magnetic Bearings
,
Arlington, VA
,
Aug. 6–9
, pp.
1
7
.
15.
Van Verdeghem
,
J.
,
Kluyskens
,
V.
, and
Dehez
,
B.
,
2017
, “
Five Degrees of Freedom Linear State-Space Representation of Electrodynamic Thrust Bearings
,”
J. Sound Vib.
,
405
(
1
), pp.
48
67
. 10.1016/j.jsv.2017.05.042
16.
Van Verdeghem
,
J.
,
Kluyskens
,
V.
, and
Dehez
,
B.
,
2019
, “
Stability and Performance Analysis of Electrodynamic Thrust Bearings
,”
Actuators
,
8
(
1
), p.
11
. 10.3390/act8010011
17.
Post
,
R.
, and
Ryutov
,
D.
,
2000
, “
The Inductrack: a Simpler Approach to Magnetic Levitation
,”
IEEE Trans. Appl. Superconduct.
,
10
(
1
), pp.
901
904
. 10.1109/77.828377
18.
Post
,
R. F.
,
1998
, “
Inductrack Demonstration Model
,”
Lawrence Livermore National Lab
.,
CA
,
Technical Report, UCRL-ID-129664, Feb
.
19.
Gurol
,
S.
, and
Baldi
,
B.
,
2004
, “
Overview of the General Atomics Urban Maglev Technology Development Program
,”
Proceedings of the 2004 IEEE/ASME Joint Rail Conference
, pp.
187
191
.
20.
Gurol
,
H.
,
Baldi
,
R.
,
Jeter
,
P.
,
Kim
,
I.-K.
,
Bever
,
D.
, and
Atomics
,
G.
,
2005
, “
General Atomics Low Speed Maglev Technology Development Program (Supplemental# 3)
,”
Federal Transit Administration. Office of Technology
,
United States
,
Technical Report
.
21.
Storset
,
O.
, and
Paden
,
B.
,
2002
, “
Infinite Dimensional Models for Perforated Track Electrodynamic Magnetic Levitation
,”
Proceedings of the 41st IEEE Conference on Decision and Control, 2002
,
Las Vegas, NV
,
Dec. 10–13
, Vol.
1
,
IEEE
, pp.
842
847
.
22.
Tsunashima
,
H.
, and
Abe
,
M.
,
1998
, “
Static and Dynamic Performance of Permanent Magnet Suspension for Maglev Transport Vehicle
,”
Veh. Syst. Dyn.
,
29
(
2
), pp.
83
111
. 10.1080/00423119808969368
23.
Pradhan
,
R.
, and
Katyayan
,
A.
,
2018
, “
Vehicle Dynamics of Permanent-Magnet Levitation Based Hyperloop Capsules
,”
ASME 2018 Dynamic Systems and Control Conference
, p.
V002T22A004
.
24.
Íñiguez
,
J.
, and
Raposo
,
V.
,
2009
, “
Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array
,”
Eur. J. Phys.
,
30
(
2
), pp.
367
379
. 10.1088/0143-0807/30/2/016
25.
Indraneel
,
T.
,
Jayakumar
,
V.
,
Soni
,
A.
,
Shiyani
,
D. R.
,
Tyagi
,
K.
, and
Abdallah
,
S.
,
2019
, “
Levitation Array Testing for Hyperloop Pod Design
,”
AIAA Scitech 2019 Forum
, p.
0787
.
26.
Duan
,
J.
,
Xiao
,
S.
,
Zhang
,
K.
,
Rotaru
,
M.
, and
Sykulski
,
J. K.
,
2019
, “
Analysis and Optimization of Asymmetrical Double-Sided Electrodynamic Suspension Devices
,”
IEEE Trans. Magn.
,
55
(
6
), pp.
1
5
.
27.
Khan
,
M. M.
,
2019
, “
Development of Ryerson’s First Hyperloop Pod for Systems Using a Modular Approach
,”
ICASSE 2019, The International Conference on Aerospace System Science and Engineering
, p.
90
.
28.
Opgenoord
,
M. M. J.
,
Merian
,
C.
,
Mayo
,
J.
,
Kirschen
,
P.
,
O’Rourke
,
C.
, and
Izatt
,
G.
et al.,
2017
, “
MIT Hyperloop Final Report
,”
Massachusetts Institute of Technology
,
Cambridge, Massachusetts
,
Technical Report
.
29.
SpaceX
,
2016
.
SpaceX Hyperloop Test-Track Specification
, https://cdn.atraining.ru/docs/TubeSpecs.pdf
30.
Pyrhonen
,
J.
,
Jokinen
,
T.
, and
Hrabovcová
,
V.
,
2008
,
Design of Rotating Electrical Machines
,
Wiley
,
Chichester, West Sussex, UK
.
31.
Bianchi
,
N.
,
2005
,
Electrical Machine Analysis Using Finite Elements
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.